Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 2
Schritt 2.1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Schritt 2.1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 2.1.2
Berechne den Grenzwert des Zählers.
Schritt 2.1.2.1
Berechne den Grenzwert.
Schritt 2.1.2.1.1
Bringe den Grenzwert in die trigonometrische Funktion, da der Sinus stetig ist.
Schritt 2.1.2.1.2
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 2.1.2.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 2.1.2.3
Vereinfache die Lösung.
Schritt 2.1.2.3.1
Mutltipliziere mit .
Schritt 2.1.2.3.2
Der genau Wert von ist .
Schritt 2.1.3
Berechne den Grenzwert des Nenners.
Schritt 2.1.3.1
Berechne den Grenzwert.
Schritt 2.1.3.1.1
Bringe den Grenzwert in die trigonometrische Funktion, da der Sinus stetig ist.
Schritt 2.1.3.1.2
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 2.1.3.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 2.1.3.3
Vereinfache die Lösung.
Schritt 2.1.3.3.1
Mutltipliziere mit .
Schritt 2.1.3.3.2
Der genau Wert von ist .
Schritt 2.1.3.3.3
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 2.1.3.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 2.1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 2.2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 2.3
Bestimme die Ableitung des Zählers und des Nenners.
Schritt 2.3.1
Differenziere den Zähler und Nenner.
Schritt 2.3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.2.2
Die Ableitung von nach ist .
Schritt 2.3.2.3
Ersetze alle durch .
Schritt 2.3.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.5
Mutltipliziere mit .
Schritt 2.3.6
Bringe auf die linke Seite von .
Schritt 2.3.7
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.3.7.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.7.2
Die Ableitung von nach ist .
Schritt 2.3.7.3
Ersetze alle durch .
Schritt 2.3.8
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.9
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.10
Mutltipliziere mit .
Schritt 2.3.11
Bringe auf die linke Seite von .
Schritt 3
Schritt 3.1
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 3.2
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 3.3
Bringe den Grenzwert in die trigonometrische Funktion, da der Kosinus stetig ist.
Schritt 3.4
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 3.5
Bringe den Grenzwert in die trigonometrische Funktion, da der Kosinus stetig ist.
Schritt 3.6
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 4
Schritt 4.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 4.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 5
Schritt 5.1
Multipliziere .
Schritt 5.1.1
Mutltipliziere mit .
Schritt 5.1.2
Mutltipliziere mit .
Schritt 5.1.3
Mutltipliziere mit .
Schritt 5.2
Vereinfache den Zähler.
Schritt 5.2.1
Mutltipliziere mit .
Schritt 5.2.2
Der genau Wert von ist .
Schritt 5.3
Vereinfache den Nenner.
Schritt 5.3.1
Mutltipliziere mit .
Schritt 5.3.2
Der genau Wert von ist .
Schritt 5.4
Kürze den gemeinsamen Faktor von .
Schritt 5.4.1
Kürze den gemeinsamen Faktor.
Schritt 5.4.2
Forme den Ausdruck um.
Schritt 5.5
Mutltipliziere mit .
Schritt 6
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: