Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Es sei . Ermittle .
Schritt 1.1.1
Differenziere .
Schritt 1.1.2
Differenziere.
Schritt 1.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3
Berechne .
Schritt 1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.3
Mutltipliziere mit .
Schritt 1.1.4
Stelle die Terme um.
Schritt 1.1.5
Ordne Terme um.
Schritt 1.2
Setze die untere Grenze für in ein.
Schritt 1.3
Vereinfache.
Schritt 1.3.1
Vereinfache jeden Term.
Schritt 1.3.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 1.3.1.2
Mutltipliziere mit .
Schritt 1.3.2
Addiere und .
Schritt 1.4
Setze die obere Grenze für in ein.
Schritt 1.5
Vereinfache.
Schritt 1.5.1
Vereinfache jeden Term.
Schritt 1.5.1.1
Potenziere mit .
Schritt 1.5.1.2
Mutltipliziere mit .
Schritt 1.5.2
Subtrahiere von .
Schritt 1.6
Die für und gefundenen Werte werden dazu verwendet, um das bestimmte Integral zu berechnen.
Schritt 1.7
Schreibe die Aufgabe mithilfe von , und den neuen Grenzen der Integration neu.
Schritt 2
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 3
Schritt 3.1
Berechne bei und .
Schritt 3.2
Vereinfache.
Schritt 3.2.1
Potenziere mit .
Schritt 3.2.2
Kombiniere und .
Schritt 3.2.3
Kürze den gemeinsamen Teiler von und .
Schritt 3.2.3.1
Faktorisiere aus heraus.
Schritt 3.2.3.2
Kürze die gemeinsamen Faktoren.
Schritt 3.2.3.2.1
Faktorisiere aus heraus.
Schritt 3.2.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.2.3.2.3
Forme den Ausdruck um.
Schritt 3.2.3.2.4
Dividiere durch .
Schritt 3.2.4
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 3.2.5
Mutltipliziere mit .
Schritt 3.2.6
Mutltipliziere mit .
Schritt 3.2.7
Addiere und .
Schritt 4