Analysis Beispiele

Berechne unter Anwendung der Regel von de l’Hospital Limes von (3 natürlicher Logarithmus von 4-x)/(x-3) für x gegen 3
Schritt 1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 1.2
Berechne den Grenzwert des Zählers.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 1.2.2
Bringe den Grenzwert in den Logarithmus.
Schritt 1.2.3
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.2.4
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 1.2.5
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.5.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.2.5.2
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.5.2.1
Subtrahiere von .
Schritt 1.2.5.2.2
Der natürliche Logarithmus von ist .
Schritt 1.2.5.2.3
Mutltipliziere mit .
Schritt 1.3
Berechne den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.3.1.2
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 1.3.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.3.3
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.3.1
Mutltipliziere mit .
Schritt 1.3.3.2
Subtrahiere von .
Schritt 1.3.3.3
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.3.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 3
Bestimme die Ableitung des Zählers und des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Differenziere den Zähler und Nenner.
Schritt 3.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.3.2
Die Ableitung von nach ist .
Schritt 3.3.3
Ersetze alle durch .
Schritt 3.4
Kombiniere und .
Schritt 3.5
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.6
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.7
Addiere und .
Schritt 3.8
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.9
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.10
Mutltipliziere mit .
Schritt 3.11
Kombiniere und .
Schritt 3.12
Mutltipliziere mit .
Schritt 3.13
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.14
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.15
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.16
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.17
Addiere und .
Schritt 4
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 5
Mutltipliziere mit .
Schritt 6
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 7
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 8
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 9
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 10
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 11
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 12
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 12.2
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.2.1
Subtrahiere von .
Schritt 12.2.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 12.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 12.2.2.2
Forme den Ausdruck um.
Schritt 12.2.3
Mutltipliziere mit .