Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2
Schritt 2.1
Es sei . Ermittle .
Schritt 2.1.1
Differenziere .
Schritt 2.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.3
Berechne .
Schritt 2.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.3.3
Mutltipliziere mit .
Schritt 2.1.4
Differenziere unter Anwendung der Konstantenregel.
Schritt 2.1.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.1.4.2
Addiere und .
Schritt 2.2
Setze die untere Grenze für in ein.
Schritt 2.3
Vereinfache.
Schritt 2.3.1
Mutltipliziere mit .
Schritt 2.3.2
Subtrahiere von .
Schritt 2.4
Setze die obere Grenze für in ein.
Schritt 2.5
Vereinfache.
Schritt 2.5.1
Mutltipliziere mit .
Schritt 2.5.2
Subtrahiere von .
Schritt 2.6
Die für und gefundenen Werte werden dazu verwendet, um das bestimmte Integral zu berechnen.
Schritt 2.7
Schreibe die Aufgabe mithilfe von , und den neuen Grenzen der Integration neu.
Schritt 3
Schritt 3.1
Mutltipliziere mit .
Schritt 3.2
Bringe auf die linke Seite von .
Schritt 4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5
Schritt 5.1
Vereinfache.
Schritt 5.1.1
Mutltipliziere mit .
Schritt 5.1.2
Mutltipliziere mit .
Schritt 5.1.3
Kürze den gemeinsamen Teiler von und .
Schritt 5.1.3.1
Faktorisiere aus heraus.
Schritt 5.1.3.2
Kürze die gemeinsamen Faktoren.
Schritt 5.1.3.2.1
Faktorisiere aus heraus.
Schritt 5.1.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.1.3.2.3
Forme den Ausdruck um.
Schritt 5.2
Wende die grundlegenden Potenzregeln an.
Schritt 5.2.1
Benutze , um als neu zu schreiben.
Schritt 5.2.2
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 5.2.3
Multipliziere die Exponenten in .
Schritt 5.2.3.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 5.2.3.2
Kombiniere und .
Schritt 5.2.3.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 6
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 7
Schritt 7.1
Berechne bei und .
Schritt 7.2
Vereinfache.
Schritt 7.2.1
Schreibe als um.
Schritt 7.2.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 7.2.3
Kürze den gemeinsamen Faktor von .
Schritt 7.2.3.1
Kürze den gemeinsamen Faktor.
Schritt 7.2.3.2
Forme den Ausdruck um.
Schritt 7.2.4
Potenziere mit .
Schritt 7.2.5
Kombiniere und .
Schritt 7.2.6
Mutltipliziere mit .
Schritt 7.2.7
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 7.2.8
Mutltipliziere mit .
Schritt 7.2.9
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 7.2.10
Subtrahiere von .
Schritt 7.2.11
Mutltipliziere mit .
Schritt 7.2.12
Mutltipliziere mit .
Schritt 7.2.13
Mutltipliziere mit .
Schritt 7.2.14
Kürze den gemeinsamen Teiler von und .
Schritt 7.2.14.1
Faktorisiere aus heraus.
Schritt 7.2.14.2
Kürze die gemeinsamen Faktoren.
Schritt 7.2.14.2.1
Faktorisiere aus heraus.
Schritt 7.2.14.2.2
Kürze den gemeinsamen Faktor.
Schritt 7.2.14.2.3
Forme den Ausdruck um.
Schritt 7.2.14.2.4
Dividiere durch .
Schritt 8