Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2
Berechne .
Schritt 1.2.1
Benutze , um als neu zu schreiben.
Schritt 1.2.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.4
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.2.5
Kombiniere und .
Schritt 1.2.6
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.2.7
Vereinfache den Zähler.
Schritt 1.2.7.1
Mutltipliziere mit .
Schritt 1.2.7.2
Subtrahiere von .
Schritt 1.2.8
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.2.9
Kombiniere und .
Schritt 1.2.10
Kombiniere und .
Schritt 1.2.11
Mutltipliziere mit .
Schritt 1.2.12
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 1.3
Berechne .
Schritt 1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.2
Schreibe als um.
Schritt 1.3.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.3.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.3.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.3.3
Ersetze alle durch .
Schritt 1.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.5
Multipliziere die Exponenten in .
Schritt 1.3.5.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.3.5.2
Mutltipliziere mit .
Schritt 1.3.6
Mutltipliziere mit .
Schritt 1.3.7
Potenziere mit .
Schritt 1.3.8
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.3.9
Subtrahiere von .
Schritt 1.3.10
Mutltipliziere mit .
Schritt 1.3.11
Kombiniere und .
Schritt 1.3.12
Kombiniere und .
Schritt 1.3.13
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 1.3.14
Kürze den gemeinsamen Teiler von und .
Schritt 1.3.14.1
Faktorisiere aus heraus.
Schritt 1.3.14.2
Kürze die gemeinsamen Faktoren.
Schritt 1.3.14.2.1
Faktorisiere aus heraus.
Schritt 1.3.14.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.3.14.2.3
Forme den Ausdruck um.
Schritt 1.4
Berechne .
Schritt 1.4.1
Benutze , um als neu zu schreiben.
Schritt 1.4.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.4.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.4.4
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.4.5
Kombiniere und .
Schritt 1.4.6
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.4.7
Vereinfache den Zähler.
Schritt 1.4.7.1
Mutltipliziere mit .
Schritt 1.4.7.2
Subtrahiere von .
Schritt 1.4.8
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.4.9
Kombiniere und .
Schritt 1.4.10
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 1.5
Stelle die Terme um.
Schritt 2
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Schreibe als um.
Schritt 2.2.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.2.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3.3
Ersetze alle durch .
Schritt 2.2.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.5
Multipliziere die Exponenten in .
Schritt 2.2.5.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.2.5.2
Mutltipliziere mit .
Schritt 2.2.6
Mutltipliziere mit .
Schritt 2.2.7
Multipliziere mit durch Addieren der Exponenten.
Schritt 2.2.7.1
Bewege .
Schritt 2.2.7.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.2.7.3
Subtrahiere von .
Schritt 2.2.8
Kombiniere und .
Schritt 2.2.9
Kombiniere und .
Schritt 2.2.10
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 2.2.11
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.3
Berechne .
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Schreibe als um.
Schritt 2.3.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.3.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.3.3
Ersetze alle durch .
Schritt 2.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.5
Multipliziere die Exponenten in .
Schritt 2.3.5.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.3.5.2
Multipliziere .
Schritt 2.3.5.2.1
Kombiniere und .
Schritt 2.3.5.2.2
Mutltipliziere mit .
Schritt 2.3.5.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.3.6
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.3.7
Kombiniere und .
Schritt 2.3.8
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.3.9
Vereinfache den Zähler.
Schritt 2.3.9.1
Mutltipliziere mit .
Schritt 2.3.9.2
Subtrahiere von .
Schritt 2.3.10
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.3.11
Kombiniere und .
Schritt 2.3.12
Kombiniere und .
Schritt 2.3.13
Multipliziere mit durch Addieren der Exponenten.
Schritt 2.3.13.1
Bewege .
Schritt 2.3.13.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.3.13.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.3.13.4
Subtrahiere von .
Schritt 2.3.13.5
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.3.14
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 2.3.15
Mutltipliziere mit .
Schritt 2.3.16
Mutltipliziere mit .
Schritt 2.3.17
Mutltipliziere mit .
Schritt 2.4
Berechne .
Schritt 2.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.4.2
Schreibe als um.
Schritt 2.4.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.4.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.4.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.4.3.3
Ersetze alle durch .
Schritt 2.4.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.4.5
Multipliziere die Exponenten in .
Schritt 2.4.5.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.4.5.2
Kürze den gemeinsamen Faktor von .
Schritt 2.4.5.2.1
Faktorisiere aus heraus.
Schritt 2.4.5.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.4.5.2.3
Forme den Ausdruck um.
Schritt 2.4.6
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.4.7
Kombiniere und .
Schritt 2.4.8
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.4.9
Vereinfache den Zähler.
Schritt 2.4.9.1
Mutltipliziere mit .
Schritt 2.4.9.2
Subtrahiere von .
Schritt 2.4.10
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.4.11
Kombiniere und .
Schritt 2.4.12
Kombiniere und .
Schritt 2.4.13
Multipliziere mit durch Addieren der Exponenten.
Schritt 2.4.13.1
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.4.13.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.4.13.3
Kombiniere und .
Schritt 2.4.13.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.4.13.5
Vereinfache den Zähler.
Schritt 2.4.13.5.1
Mutltipliziere mit .
Schritt 2.4.13.5.2
Subtrahiere von .
Schritt 2.4.13.6
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.4.14
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 2.4.15
Mutltipliziere mit .
Schritt 2.4.16
Mutltipliziere mit .
Schritt 2.4.17
Mutltipliziere mit .
Schritt 2.4.18
Mutltipliziere mit .
Schritt 2.5
Stelle die Terme um.
Schritt 3
Schritt 3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.2
Berechne .
Schritt 3.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2.2
Schreibe als um.
Schritt 3.2.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.2.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.3.3
Ersetze alle durch .
Schritt 3.2.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.5
Multipliziere die Exponenten in .
Schritt 3.2.5.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.2.5.2
Mutltipliziere mit .
Schritt 3.2.6
Mutltipliziere mit .
Schritt 3.2.7
Multipliziere mit durch Addieren der Exponenten.
Schritt 3.2.7.1
Bewege .
Schritt 3.2.7.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.2.7.3
Subtrahiere von .
Schritt 3.2.8
Mutltipliziere mit .
Schritt 3.2.9
Kombiniere und .
Schritt 3.2.10
Mutltipliziere mit .
Schritt 3.2.11
Kombiniere und .
Schritt 3.2.12
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 3.2.13
Kürze den gemeinsamen Teiler von und .
Schritt 3.2.13.1
Faktorisiere aus heraus.
Schritt 3.2.13.2
Kürze die gemeinsamen Faktoren.
Schritt 3.2.13.2.1
Faktorisiere aus heraus.
Schritt 3.2.13.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.2.13.2.3
Forme den Ausdruck um.
Schritt 3.3
Berechne .
Schritt 3.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3.2
Schreibe als um.
Schritt 3.3.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.3.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.3.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3.3.3
Ersetze alle durch .
Schritt 3.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3.5
Multipliziere die Exponenten in .
Schritt 3.3.5.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.3.5.2
Kürze den gemeinsamen Faktor von .
Schritt 3.3.5.2.1
Faktorisiere aus heraus.
Schritt 3.3.5.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.3.5.2.3
Forme den Ausdruck um.
Schritt 3.3.5.3
Mutltipliziere mit .
Schritt 3.3.6
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.3.7
Kombiniere und .
Schritt 3.3.8
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.3.9
Vereinfache den Zähler.
Schritt 3.3.9.1
Mutltipliziere mit .
Schritt 3.3.9.2
Subtrahiere von .
Schritt 3.3.10
Kombiniere und .
Schritt 3.3.11
Kombiniere und .
Schritt 3.3.12
Multipliziere mit durch Addieren der Exponenten.
Schritt 3.3.12.1
Bewege .
Schritt 3.3.12.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.3.12.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.3.12.4
Kombiniere und .
Schritt 3.3.12.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.3.12.6
Vereinfache den Zähler.
Schritt 3.3.12.6.1
Mutltipliziere mit .
Schritt 3.3.12.6.2
Addiere und .
Schritt 3.3.12.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.3.13
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 3.3.14
Mutltipliziere mit .
Schritt 3.3.15
Mutltipliziere mit .
Schritt 3.4
Berechne .
Schritt 3.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.4.2
Schreibe als um.
Schritt 3.4.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.4.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.4.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.4.3.3
Ersetze alle durch .
Schritt 3.4.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.4.5
Multipliziere die Exponenten in .
Schritt 3.4.5.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.4.5.2
Multipliziere .
Schritt 3.4.5.2.1
Kombiniere und .
Schritt 3.4.5.2.2
Mutltipliziere mit .
Schritt 3.4.5.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.4.6
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.4.7
Kombiniere und .
Schritt 3.4.8
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.4.9
Vereinfache den Zähler.
Schritt 3.4.9.1
Mutltipliziere mit .
Schritt 3.4.9.2
Subtrahiere von .
Schritt 3.4.10
Kombiniere und .
Schritt 3.4.11
Kombiniere und .
Schritt 3.4.12
Multipliziere mit durch Addieren der Exponenten.
Schritt 3.4.12.1
Bewege .
Schritt 3.4.12.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.4.12.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.4.12.4
Addiere und .
Schritt 3.4.12.5
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.4.13
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 3.4.14
Mutltipliziere mit .
Schritt 3.4.15
Mutltipliziere mit .
Schritt 3.4.16
Mutltipliziere mit .
Schritt 3.4.17
Mutltipliziere mit .
Schritt 3.4.18
Mutltipliziere mit .
Schritt 3.5
Stelle die Terme um.
Schritt 4
Schritt 4.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.2
Berechne .
Schritt 4.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.2.2
Schreibe als um.
Schritt 4.2.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 4.2.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 4.2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.2.3.3
Ersetze alle durch .
Schritt 4.2.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.2.5
Multipliziere die Exponenten in .
Schritt 4.2.5.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.2.5.2
Mutltipliziere mit .
Schritt 4.2.6
Mutltipliziere mit .
Schritt 4.2.7
Multipliziere mit durch Addieren der Exponenten.
Schritt 4.2.7.1
Bewege .
Schritt 4.2.7.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.2.7.3
Subtrahiere von .
Schritt 4.2.8
Mutltipliziere mit .
Schritt 4.3
Berechne .
Schritt 4.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.3.2
Schreibe als um.
Schritt 4.3.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 4.3.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 4.3.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.3.3.3
Ersetze alle durch .
Schritt 4.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.3.5
Multipliziere die Exponenten in .
Schritt 4.3.5.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.3.5.2
Multipliziere .
Schritt 4.3.5.2.1
Kombiniere und .
Schritt 4.3.5.2.2
Mutltipliziere mit .
Schritt 4.3.5.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.3.6
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4.3.7
Kombiniere und .
Schritt 4.3.8
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.3.9
Vereinfache den Zähler.
Schritt 4.3.9.1
Mutltipliziere mit .
Schritt 4.3.9.2
Subtrahiere von .
Schritt 4.3.10
Kombiniere und .
Schritt 4.3.11
Kombiniere und .
Schritt 4.3.12
Multipliziere mit durch Addieren der Exponenten.
Schritt 4.3.12.1
Bewege .
Schritt 4.3.12.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.3.12.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.3.12.4
Addiere und .
Schritt 4.3.12.5
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.3.13
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 4.3.14
Mutltipliziere mit .
Schritt 4.3.15
Mutltipliziere mit .
Schritt 4.3.16
Mutltipliziere mit .
Schritt 4.4
Berechne .
Schritt 4.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.4.2
Schreibe als um.
Schritt 4.4.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 4.4.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 4.4.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.4.3.3
Ersetze alle durch .
Schritt 4.4.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.4.5
Multipliziere die Exponenten in .
Schritt 4.4.5.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.4.5.2
Kürze den gemeinsamen Faktor von .
Schritt 4.4.5.2.1
Faktorisiere aus heraus.
Schritt 4.4.5.2.2
Kürze den gemeinsamen Faktor.
Schritt 4.4.5.2.3
Forme den Ausdruck um.
Schritt 4.4.5.3
Mutltipliziere mit .
Schritt 4.4.6
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4.4.7
Kombiniere und .
Schritt 4.4.8
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.4.9
Vereinfache den Zähler.
Schritt 4.4.9.1
Mutltipliziere mit .
Schritt 4.4.9.2
Subtrahiere von .
Schritt 4.4.10
Kombiniere und .
Schritt 4.4.11
Kombiniere und .
Schritt 4.4.12
Multipliziere mit durch Addieren der Exponenten.
Schritt 4.4.12.1
Bewege .
Schritt 4.4.12.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.4.12.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4.4.12.4
Kombiniere und .
Schritt 4.4.12.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.4.12.6
Vereinfache den Zähler.
Schritt 4.4.12.6.1
Mutltipliziere mit .
Schritt 4.4.12.6.2
Addiere und .
Schritt 4.4.12.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.4.13
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 4.4.14
Mutltipliziere mit .
Schritt 4.4.15
Mutltipliziere mit .
Schritt 4.4.16
Mutltipliziere mit .
Schritt 4.4.17
Mutltipliziere mit .
Schritt 4.4.18
Mutltipliziere mit .
Schritt 4.5
Vereinfache.
Schritt 4.5.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 4.5.2
Vereine die Terme
Schritt 4.5.2.1
Kombiniere und .
Schritt 4.5.2.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.5.3
Stelle die Terme um.