Analysis Beispiele

미분 구하기 - d/dx 3/4x^(4/3)-3/8x^(2/3)+9
Schritt 1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.4
Kombiniere und .
Schritt 2.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.6
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.1
Mutltipliziere mit .
Schritt 2.6.2
Subtrahiere von .
Schritt 2.7
Kombiniere und .
Schritt 2.8
Mutltipliziere mit .
Schritt 2.9
Mutltipliziere mit .
Schritt 2.10
Mutltipliziere mit .
Schritt 2.11
Kürze den gemeinsamen Faktor.
Schritt 2.12
Dividiere durch .
Schritt 3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.4
Kombiniere und .
Schritt 3.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.6
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.6.1
Mutltipliziere mit .
Schritt 3.6.2
Subtrahiere von .
Schritt 3.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.8
Kombiniere und .
Schritt 3.9
Mutltipliziere mit .
Schritt 3.10
Mutltipliziere mit .
Schritt 3.11
Mutltipliziere mit .
Schritt 3.12
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 3.13
Faktorisiere aus heraus.
Schritt 3.14
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.14.1
Faktorisiere aus heraus.
Schritt 3.14.2
Kürze den gemeinsamen Faktor.
Schritt 3.14.3
Forme den Ausdruck um.
Schritt 4
Differenziere unter Anwendung der Konstantenregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.2
Addiere und .