Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Zerlege den Bruch in zwei Brüche.
Schritt 2
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4
Schritt 4.1
Es sei . Ermittle .
Schritt 4.1.1
Differenziere .
Schritt 4.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.1.5
Addiere und .
Schritt 4.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 5
Schritt 5.1
Mutltipliziere mit .
Schritt 5.2
Bringe auf die linke Seite von .
Schritt 6
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7
Schritt 7.1
Kombiniere und .
Schritt 7.2
Kürze den gemeinsamen Faktor von .
Schritt 7.2.1
Kürze den gemeinsamen Faktor.
Schritt 7.2.2
Forme den Ausdruck um.
Schritt 7.3
Mutltipliziere mit .
Schritt 8
Das Integral von nach ist .
Schritt 9
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 10
Schritt 10.1
Stelle und um.
Schritt 10.2
Schreibe als um.
Schritt 11
Das Integral von nach ist .
Schritt 12
Schritt 12.1
Kombiniere und .
Schritt 12.2
Vereinfache.
Schritt 13
Ersetze alle durch .
Schritt 14
Stelle die Terme um.