Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 1.2
Berechne den Grenzwert des Zählers.
Schritt 1.2.1
Berechne den Grenzwert.
Schritt 1.2.1.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.2.1.2
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 1.2.1.3
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 1.2.1.4
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 1.2.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.2.3
Vereinfache die Lösung.
Schritt 1.2.3.1
Vereinfache jeden Term.
Schritt 1.2.3.1.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 1.2.3.1.2
Mutltipliziere mit .
Schritt 1.2.3.2
Subtrahiere von .
Schritt 1.3
Berechne den Grenzwert des Nenners.
Schritt 1.3.1
Berechne den Grenzwert.
Schritt 1.3.1.1
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 1.3.1.2
Bringe den Grenzwert in die trigonometrische Funktion, da der Tangens stetig ist.
Schritt 1.3.1.3
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.3.1.4
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 1.3.1.5
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 1.3.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.3.3
Vereinfache die Lösung.
Schritt 1.3.3.1
Vereinfache jeden Term.
Schritt 1.3.3.1.1
Mutltipliziere mit .
Schritt 1.3.3.1.2
Mutltipliziere mit .
Schritt 1.3.3.2
Subtrahiere von .
Schritt 1.3.3.3
Der genau Wert von ist .
Schritt 1.3.3.4
Mutltipliziere mit .
Schritt 1.3.3.5
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.3.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 3
Schritt 3.1
Differenziere den Zähler und Nenner.
Schritt 3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.4
Berechne .
Schritt 3.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.4.3
Mutltipliziere mit .
Schritt 3.5
Subtrahiere von .
Schritt 3.6
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.7
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.7.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.7.2
Die Ableitung von nach ist .
Schritt 3.7.3
Ersetze alle durch .
Schritt 3.8
Entferne die Klammern.
Schritt 3.9
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.10
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.11
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.12
Mutltipliziere mit .
Schritt 3.13
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.14
Addiere und .
Schritt 3.15
Mutltipliziere mit .
Schritt 4
Schritt 4.1
Faktorisiere aus heraus.
Schritt 4.2
Kürze die gemeinsamen Faktoren.
Schritt 4.2.1
Faktorisiere aus heraus.
Schritt 4.2.2
Kürze den gemeinsamen Faktor.
Schritt 4.2.3
Forme den Ausdruck um.
Schritt 5
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 6
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 7
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 8
Bringe den Grenzwert in die trigonometrische Funktion, da der Sekans ist stetig.
Schritt 9
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 10
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 11
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 12
Schritt 12.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 12.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 13
Schritt 13.1
Kombinieren.
Schritt 13.2
Mutltipliziere mit .
Schritt 13.3
Vereinfache den Nenner.
Schritt 13.3.1
Vereinfache jeden Term.
Schritt 13.3.1.1
Mutltipliziere mit .
Schritt 13.3.1.2
Mutltipliziere mit .
Schritt 13.3.2
Subtrahiere von .
Schritt 13.3.3
Der genau Wert von ist .
Schritt 13.3.4
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 13.4
Mutltipliziere mit .
Schritt 13.5
Ziehe das Minuszeichen vor den Bruch.