Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Es sei . Ermittle .
Schritt 1.1.1
Differenziere .
Schritt 1.1.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.1.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.1.2.2
Die Ableitung von nach ist .
Schritt 1.1.2.3
Ersetze alle durch .
Schritt 1.1.3
Differenziere.
Schritt 1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.3
Vereinfache den Ausdruck.
Schritt 1.1.3.3.1
Mutltipliziere mit .
Schritt 1.1.3.3.2
Bringe auf die linke Seite von .
Schritt 1.2
Setze die untere Grenze für in ein.
Schritt 1.3
Vereinfache.
Schritt 1.3.1
Mutltipliziere mit .
Schritt 1.3.2
Der genau Wert von ist .
Schritt 1.4
Setze die obere Grenze für in ein.
Schritt 1.5
Vereinfache.
Schritt 1.5.1
Kürze den gemeinsamen Faktor von .
Schritt 1.5.1.1
Faktorisiere aus heraus.
Schritt 1.5.1.2
Kürze den gemeinsamen Faktor.
Schritt 1.5.1.3
Forme den Ausdruck um.
Schritt 1.5.2
Der genau Wert von ist .
Schritt 1.6
Die für und gefundenen Werte werden dazu verwendet, um das bestimmte Integral zu berechnen.
Schritt 1.7
Schreibe die Aufgabe mithilfe von , und den neuen Grenzen der Integration neu.
Schritt 2
Kombiniere und .
Schritt 3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4
Das Integral von nach ist .
Schritt 5
Schritt 5.1
Berechne bei und .
Schritt 5.2
Vereinfache.
Schritt 5.2.1
Vereinfache.
Schritt 5.2.2
Alles, was mit potenziert wird, ist .
Schritt 5.2.3
Mutltipliziere mit .
Schritt 6
Schritt 6.1
Wende das Distributivgesetz an.
Schritt 6.2
Kombiniere und .
Schritt 6.3
Kombiniere und .
Schritt 6.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 7
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: