Analysis Beispiele

Berechne das Integral Integral über (x-5)/(-2x+2) nach x
Schritt 1
Dividiere durch .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Stelle die zu dividierenden Polynome auf. Wenn es nicht für jeden Exponenten einen Term gibt, setze einen ein mit dem Wert .
-+-
Schritt 1.2
Dividiere den Term höchster Ordnung im Dividend durch den Term höchster Ordnung im Divisor .
-
-+-
Schritt 1.3
Multipliziere den neuen Bruchterm mit dem Teiler.
-
-+-
+-
Schritt 1.4
Der Ausdruck muss vom Dividenden abgezogen werden, ändere also alle Vorzeichen in
-
-+-
-+
Schritt 1.5
Addiere nach dem Wechsel der Vorzeichen den letzten Dividenden des ausmultiplizierten Polynoms, um den neuen Dividenden zu finden.
-
-+-
-+
-
Schritt 1.6
Die endgültige Lösung ist der Quotient plus dem Rest geteilt durch den Divisor.
Schritt 2
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 3
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Faktorisiere aus heraus.
Schritt 3.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Faktorisiere aus heraus.
Schritt 3.2.2
Faktorisiere aus heraus.
Schritt 3.2.3
Faktorisiere aus heraus.
Schritt 3.2.4
Kürze den gemeinsamen Faktor.
Schritt 3.2.5
Forme den Ausdruck um.
Schritt 4
Wende die Konstantenregel an.
Schritt 5
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 6
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7
Mutltipliziere mit .
Schritt 8
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1.1
Forme um.
Schritt 8.1.2
Dividiere durch .
Schritt 8.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 9
Ziehe das Minuszeichen vor den Bruch.
Schritt 10
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 11
Mutltipliziere mit .
Schritt 12
Das Integral von nach ist .
Schritt 13
Vereinfache.
Schritt 14
Ersetze alle durch .