Analysis Beispiele

Ermittle die Stammfunktion f(x)=3x^2sin(x^3+2003)
Schritt 1
Die Funktion kann bestimmt werden, indem das unbestimmte Integral der Ableitung ermittelt wird.
Schritt 2
Stelle das Integral auf, um zu lösen.
Schritt 3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Differenziere .
Schritt 4.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.1.5
Addiere und .
Schritt 4.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 5
Kombiniere und .
Schritt 6
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Kombiniere und .
Schritt 7.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Kürze den gemeinsamen Faktor.
Schritt 7.2.2
Forme den Ausdruck um.
Schritt 7.3
Mutltipliziere mit .
Schritt 8
Das Integral von nach ist .
Schritt 9
Ersetze alle durch .
Schritt 10
Die Lösung ist die Stammfunktion der Funktion .