Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Es sei . Ermittle .
Schritt 1.1.1
Differenziere .
Schritt 1.1.2
Differenziere.
Schritt 1.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.3
Die Ableitung von nach ist .
Schritt 1.1.4
Subtrahiere von .
Schritt 1.2
Setze die untere Grenze für in ein.
Schritt 1.3
Vereinfache.
Schritt 1.3.1
Der genau Wert von ist .
Schritt 1.3.2
Addiere und .
Schritt 1.4
Setze die obere Grenze für in ein.
Schritt 1.5
Vereinfache.
Schritt 1.5.1
Vereinfache jeden Term.
Schritt 1.5.1.1
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Kosinus im zweiten Quadranten negativ ist.
Schritt 1.5.1.2
Der genau Wert von ist .
Schritt 1.5.1.3
Mutltipliziere mit .
Schritt 1.5.2
Subtrahiere von .
Schritt 1.6
Die für und gefundenen Werte werden dazu verwendet, um das bestimmte Integral zu berechnen.
Schritt 1.7
Schreibe die Aufgabe mithilfe von , und den neuen Grenzen der Integration neu.
Schritt 2
Zerlege den Bruch in mehrere Brüche.
Schritt 3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4
Das Integral von nach ist .
Schritt 5
Berechne bei und .
Schritt 6
Nutze die Quotienteneigenschaft von Logarithmen, .
Schritt 7
Schritt 7.1
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 7.2
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 7.3
Dividiere durch .
Schritt 7.4
Der natürliche Logarithmus von null ist nicht definiert.
Undefiniert
Schritt 8
Der natürliche Logarithmus von null ist nicht definiert.
Undefiniert