Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Die Funktion kann bestimmt werden, indem das unbestimmte Integral der Ableitung ermittelt wird.
Schritt 3
Stelle das Integral auf, um zu lösen.
Schritt 4
Schritt 4.1
Es sei . Ermittle .
Schritt 4.1.1
Differenziere .
Schritt 4.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.1.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.1.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.5
Addiere und .
Schritt 4.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 5
Kombiniere und .
Schritt 6
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7
Benutze , um als neu zu schreiben.
Schritt 8
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 9
Schritt 9.1
Schreibe als um.
Schritt 9.2
Vereinfache.
Schritt 9.2.1
Mutltipliziere mit .
Schritt 9.2.2
Mutltipliziere mit .
Schritt 9.2.3
Kürze den gemeinsamen Teiler von und .
Schritt 9.2.3.1
Faktorisiere aus heraus.
Schritt 9.2.3.2
Kürze die gemeinsamen Faktoren.
Schritt 9.2.3.2.1
Faktorisiere aus heraus.
Schritt 9.2.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 9.2.3.2.3
Forme den Ausdruck um.
Schritt 10
Ersetze alle durch .
Schritt 11
Die Lösung ist die Stammfunktion der Funktion .