Analysis Beispiele

Berechne den Grenzwert Grenzwert von (x+8x^2)/(x^2-1/64), wenn x gegen -1/8 geht
Schritt 1
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.2
Kombiniere und .
Schritt 1.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Vereinfache das Argument des Grenzwertes
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 2.1.2
Mutltipliziere mit .
Schritt 2.2
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 3
Wende die Regel von de L’Hospital an.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 3.1.2
Berechne den Grenzwert des Zählers.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 3.1.2.2
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 3.1.2.3
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 3.1.2.4
Berechne die Grenzwerte durch Einsetzen von für alle .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.4.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 3.1.2.4.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 3.1.2.5
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.5.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.5.1.1
Wende die Exponentenregel an, um den Exponenten zu verteilen.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.5.1.1.1
Wende die Produktregel auf an.
Schritt 3.1.2.5.1.1.2
Wende die Produktregel auf an.
Schritt 3.1.2.5.1.2
Potenziere mit .
Schritt 3.1.2.5.1.3
Mutltipliziere mit .
Schritt 3.1.2.5.1.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.5.1.4.1
Faktorisiere aus heraus.
Schritt 3.1.2.5.1.4.2
Kürze den gemeinsamen Faktor.
Schritt 3.1.2.5.1.4.3
Forme den Ausdruck um.
Schritt 3.1.2.5.1.5
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 3.1.2.5.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.1.2.5.3
Addiere und .
Schritt 3.1.2.5.4
Dividiere durch .
Schritt 3.1.3
Berechne den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.3.1
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.3.1.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 3.1.3.1.2
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 3.1.3.1.3
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 3.1.3.1.4
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 3.1.3.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 3.1.3.3
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.3.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.3.3.1.1
Wende die Exponentenregel an, um den Exponenten zu verteilen.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.3.3.1.1.1
Wende die Produktregel auf an.
Schritt 3.1.3.3.1.1.2
Wende die Produktregel auf an.
Schritt 3.1.3.3.1.2
Potenziere mit .
Schritt 3.1.3.3.1.3
Mutltipliziere mit .
Schritt 3.1.3.3.1.4
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 3.1.3.3.1.5
Potenziere mit .
Schritt 3.1.3.3.1.6
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.3.3.1.6.1
Kürze den gemeinsamen Faktor.
Schritt 3.1.3.3.1.6.2
Forme den Ausdruck um.
Schritt 3.1.3.3.1.7
Mutltipliziere mit .
Schritt 3.1.3.3.2
Subtrahiere von .
Schritt 3.1.3.3.3
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 3.1.3.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 3.1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 3.2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 3.3
Bestimme die Ableitung des Zählers und des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Differenziere den Zähler und Nenner.
Schritt 3.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3.4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3.4.3
Mutltipliziere mit .
Schritt 3.3.5
Stelle die Terme um.
Schritt 3.3.6
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.3.7
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.7.1
Bringe auf die linke Seite von .
Schritt 3.3.7.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3.7.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3.7.4
Mutltipliziere mit .
Schritt 3.3.8
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.3.9
Addiere und .
Schritt 4
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 4.2
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 4.3
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 4.4
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 4.5
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 5
Berechne die Grenzwerte durch Einsetzen von für alle .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 5.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 6
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1
Faktorisiere aus heraus.
Schritt 6.1.2
Kürze den gemeinsamen Faktor.
Schritt 6.1.3
Forme den Ausdruck um.
Schritt 6.2
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 6.3
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 6.3.1.2
Faktorisiere aus heraus.
Schritt 6.3.1.3
Kürze den gemeinsamen Faktor.
Schritt 6.3.1.4
Forme den Ausdruck um.
Schritt 6.3.2
Mutltipliziere mit .
Schritt 6.4
Addiere und .
Schritt 6.5
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.5.1
Mutltipliziere mit .
Schritt 6.5.2
Mutltipliziere mit .
Schritt 6.6
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.6.1
Faktorisiere aus heraus.
Schritt 6.6.2
Kürze den gemeinsamen Faktor.
Schritt 6.6.3
Forme den Ausdruck um.