Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Kombiniere und .
Schritt 1.2
Entferne nicht-negative Terme aus dem Absolutwert.
Schritt 2
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 3
Teile das Integral auf in Abhängigkeit davon, ob positiv oder negativ ist.
Schritt 4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 6
Kombiniere und .
Schritt 7
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 8
Schritt 8.1
Kombiniere und .
Schritt 8.2
Substituiere und vereinfache.
Schritt 8.2.1
Berechne bei und .
Schritt 8.2.2
Berechne bei und .
Schritt 8.2.3
Vereinfache.
Schritt 8.2.3.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 8.2.3.2
Kürze den gemeinsamen Teiler von und .
Schritt 8.2.3.2.1
Faktorisiere aus heraus.
Schritt 8.2.3.2.2
Kürze die gemeinsamen Faktoren.
Schritt 8.2.3.2.2.1
Faktorisiere aus heraus.
Schritt 8.2.3.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 8.2.3.2.2.3
Forme den Ausdruck um.
Schritt 8.2.3.2.2.4
Dividiere durch .
Schritt 8.2.3.3
Potenziere mit .
Schritt 8.2.3.4
Kürze den gemeinsamen Teiler von und .
Schritt 8.2.3.4.1
Faktorisiere aus heraus.
Schritt 8.2.3.4.2
Kürze die gemeinsamen Faktoren.
Schritt 8.2.3.4.2.1
Faktorisiere aus heraus.
Schritt 8.2.3.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 8.2.3.4.2.3
Forme den Ausdruck um.
Schritt 8.2.3.4.2.4
Dividiere durch .
Schritt 8.2.3.5
Mutltipliziere mit .
Schritt 8.2.3.6
Subtrahiere von .
Schritt 8.2.3.7
Mutltipliziere mit .
Schritt 8.2.3.8
Potenziere mit .
Schritt 8.2.3.9
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 8.2.3.10
Kürze den gemeinsamen Teiler von und .
Schritt 8.2.3.10.1
Faktorisiere aus heraus.
Schritt 8.2.3.10.2
Kürze die gemeinsamen Faktoren.
Schritt 8.2.3.10.2.1
Faktorisiere aus heraus.
Schritt 8.2.3.10.2.2
Kürze den gemeinsamen Faktor.
Schritt 8.2.3.10.2.3
Forme den Ausdruck um.
Schritt 8.2.3.10.2.4
Dividiere durch .
Schritt 8.2.3.11
Mutltipliziere mit .
Schritt 8.2.3.12
Addiere und .
Schritt 8.2.3.13
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 8.2.3.14
Kombiniere und .
Schritt 8.2.3.15
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 8.2.3.16
Vereinfache den Zähler.
Schritt 8.2.3.16.1
Mutltipliziere mit .
Schritt 8.2.3.16.2
Addiere und .
Schritt 8.2.3.17
Mutltipliziere mit .
Schritt 8.2.3.18
Mutltipliziere mit .
Schritt 9
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform:
Darstellung als gemischte Zahl:
Schritt 10