Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Teile den Zähler und Nenner durch die höchste Potenz von im Nenner, was ist.
Schritt 2
Schritt 2.1
Vereinfache jeden Term.
Schritt 2.1.1
Kürze den gemeinsamen Faktor von .
Schritt 2.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.1.1.2
Dividiere durch .
Schritt 2.1.2
Kürze den gemeinsamen Teiler von und .
Schritt 2.1.2.1
Faktorisiere aus heraus.
Schritt 2.1.2.2
Kürze die gemeinsamen Faktoren.
Schritt 2.1.2.2.1
Faktorisiere aus heraus.
Schritt 2.1.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.1.2.2.3
Forme den Ausdruck um.
Schritt 2.1.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.1.4
Kürze den gemeinsamen Teiler von und .
Schritt 2.1.4.1
Faktorisiere aus heraus.
Schritt 2.1.4.2
Kürze die gemeinsamen Faktoren.
Schritt 2.1.4.2.1
Faktorisiere aus heraus.
Schritt 2.1.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.1.4.2.3
Forme den Ausdruck um.
Schritt 2.2
Vereinfache jeden Term.
Schritt 2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.2
Dividiere durch .
Schritt 2.2.2
Kürze den gemeinsamen Teiler von und .
Schritt 2.2.2.1
Faktorisiere aus heraus.
Schritt 2.2.2.2
Kürze die gemeinsamen Faktoren.
Schritt 2.2.2.2.1
Faktorisiere aus heraus.
Schritt 2.2.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.2.2.2.3
Forme den Ausdruck um.
Schritt 2.2.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.3
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.4
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.5
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 2.6
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 3
Da sein Zähler sich einer reellen Zahl nähert, während sein Nenner unbegrenzt ist, nähert sich der Bruch .
Schritt 4
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 5
Da sein Zähler sich einer reellen Zahl nähert, während sein Nenner unbegrenzt ist, nähert sich der Bruch .
Schritt 6
Schritt 6.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 6.2
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 6.3
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 7
Da sein Zähler sich einer reellen Zahl nähert, während sein Nenner unbegrenzt ist, nähert sich der Bruch .
Schritt 8
Schritt 8.1
Vereinfache den Zähler.
Schritt 8.1.1
Mutltipliziere mit .
Schritt 8.1.2
Mutltipliziere mit .
Schritt 8.1.3
Addiere und .
Schritt 8.1.4
Addiere und .
Schritt 8.2
Vereinfache den Nenner.
Schritt 8.2.1
Mutltipliziere mit .
Schritt 8.2.2
Addiere und .
Schritt 9
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: