Analysis Beispiele

Berechne das Integral Integral von 0 bis 1 über xsin(pix^2) nach x
Schritt 1
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Differenziere .
Schritt 1.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.4
Bringe auf die linke Seite von .
Schritt 1.1.5
Stelle und um.
Schritt 1.1.6
Stelle und um.
Schritt 1.2
Setze die untere Grenze für in ein.
Schritt 1.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 1.3.2
Mutltipliziere mit .
Schritt 1.4
Setze die obere Grenze für in ein.
Schritt 1.5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 1.5.2
Mutltipliziere mit .
Schritt 1.6
Die für und gefundenen Werte werden dazu verwendet, um das bestimmte Integral zu berechnen.
Schritt 1.7
Schreibe die Aufgabe mithilfe von , und den neuen Grenzen der Integration neu.
Schritt 2
Kombiniere und .
Schritt 3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4
Das Integral von nach ist .
Schritt 5
Berechne bei und .
Schritt 6
Der genau Wert von ist .
Schritt 7
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Kosinus im zweiten Quadranten negativ ist.
Schritt 7.2
Der genau Wert von ist .
Schritt 7.3
Mutltipliziere mit .
Schritt 7.4
Mutltipliziere mit .
Schritt 7.5
Addiere und .
Schritt 7.6
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.6.1
Faktorisiere aus heraus.
Schritt 7.6.2
Kürze den gemeinsamen Faktor.
Schritt 7.6.3
Forme den Ausdruck um.
Schritt 8
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: