Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Die Funktion kann bestimmt werden, indem das unbestimmte Integral der Ableitung ermittelt wird.
Schritt 2
Stelle das Integral auf, um zu lösen.
Schritt 3
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 4
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 5
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 6
Schritt 6.1
Benutze , um als neu zu schreiben.
Schritt 6.2
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 6.3
Multipliziere die Exponenten in .
Schritt 6.3.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 6.3.2
Kombiniere und .
Schritt 6.3.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 7
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 8
Schritt 8.1
Vereinfache.
Schritt 8.2
Mutltipliziere mit .
Schritt 9
Die Lösung ist die Stammfunktion der Funktion .