Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Die Funktion kann bestimmt werden, indem das unbestimmte Integral der Ableitung ermittelt wird.
Schritt 3
Stelle das Integral auf, um zu lösen.
Schritt 4
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 5
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 6
Schritt 6.1
Es sei . Ermittle .
Schritt 6.1.1
Differenziere .
Schritt 6.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 6.1.3
Berechne .
Schritt 6.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 6.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 6.1.3.3
Mutltipliziere mit .
Schritt 6.1.4
Differenziere unter Anwendung der Konstantenregel.
Schritt 6.1.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 6.1.4.2
Addiere und .
Schritt 6.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 7
Schritt 7.1
Mutltipliziere mit .
Schritt 7.2
Bringe auf die linke Seite von .
Schritt 8
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 9
Kombiniere und .
Schritt 10
Das Integral von nach ist .
Schritt 11
Wende die Konstantenregel an.
Schritt 12
Vereinfache.
Schritt 13
Ersetze alle durch .
Schritt 14
Die Lösung ist die Stammfunktion der Funktion .