Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 1.2
Berechne den Grenzwert des Zählers.
Schritt 1.2.1
Berechne den Grenzwert.
Schritt 1.2.1.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.2.1.2
Bringe den Grenzwert in die trigonometrische Funktion, da der Kosinus stetig ist.
Schritt 1.2.1.3
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 1.2.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.2.3
Vereinfache die Lösung.
Schritt 1.2.3.1
Vereinfache jeden Term.
Schritt 1.2.3.1.1
Der genau Wert von ist .
Schritt 1.2.3.1.2
Mutltipliziere mit .
Schritt 1.2.3.2
Subtrahiere von .
Schritt 1.3
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 3
Schritt 3.1
Differenziere den Zähler und Nenner.
Schritt 3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.3
Die Ableitung von nach ist .
Schritt 3.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.5
Addiere und .
Schritt 3.6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4
Schritt 4.1
Dividiere durch .
Schritt 4.2
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 4.3
Bringe den Grenzwert in die trigonometrische Funktion, da der Sinus stetig ist.
Schritt 5
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 6
Schritt 6.1
Der genau Wert von ist .
Schritt 6.2
Mutltipliziere mit .