Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Die Funktion kann bestimmt werden, indem das unbestimmte Integral der Ableitung ermittelt wird.
Schritt 3
Stelle das Integral auf, um zu lösen.
Schritt 4
Integriere partiell durch Anwendung der Formel , mit und .
Schritt 5
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 6
Schritt 6.1
Kombiniere und .
Schritt 6.2
Kombiniere und .
Schritt 6.3
Mutltipliziere mit .
Schritt 7
Schritt 7.1
Es sei . Ermittle .
Schritt 7.1.1
Differenziere .
Schritt 7.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 7.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 7.1.4
Mutltipliziere mit .
Schritt 7.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 8
Schritt 8.1
Multipliziere mit dem Kehrwert des Bruchs, um durch zu dividieren.
Schritt 8.2
Mutltipliziere mit .
Schritt 8.3
Bringe auf die linke Seite von .
Schritt 9
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 10
Mutltipliziere mit .
Schritt 11
Das Integral von nach ist .
Schritt 12
Schreibe als um.
Schritt 13
Ersetze alle durch .
Schritt 14
Stelle die Terme um.
Schritt 15
Die Lösung ist die Stammfunktion der Funktion .