Analysis Beispiele

Ermittle die Stammfunktion 1/(e^(2-5x))
Schritt 1
Schreibe als Funktion.
Schritt 2
Die Funktion kann bestimmt werden, indem das unbestimmte Integral der Ableitung ermittelt wird.
Schritt 3
Stelle das Integral auf, um zu lösen.
Schritt 4
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Kehre das Vorzeichen des Exponenten von um und ziehe es aus dem Nenner heraus.
Schritt 4.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.2.1.2
Wende das Distributivgesetz an.
Schritt 4.2.1.3
Mutltipliziere mit .
Schritt 4.2.1.4
Mutltipliziere mit .
Schritt 4.2.2
Mutltipliziere mit .
Schritt 5
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Differenziere .
Schritt 5.1.2
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 5.1.2.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 5.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 5.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.1.3.3
Mutltipliziere mit .
Schritt 5.1.4
Addiere und .
Schritt 5.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 6
Kombiniere und .
Schritt 7
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 8
Das Integral von nach ist .
Schritt 9
Vereinfache.
Schritt 10
Ersetze alle durch .
Schritt 11
Die Lösung ist die Stammfunktion der Funktion .