Analysis Beispiele

Bestimme das Integral xe^(2x)dx
Schritt 1
Integriere partiell durch Anwendung der Formel , mit und .
Schritt 2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Kombiniere und .
Schritt 2.2
Kombiniere und .
Schritt 3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Differenziere .
Schritt 4.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.4
Mutltipliziere mit .
Schritt 4.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 5
Kombiniere und .
Schritt 6
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Mutltipliziere mit .
Schritt 7.2
Mutltipliziere mit .
Schritt 8
Das Integral von nach ist .
Schritt 9
Schreibe als um.
Schritt 10
Ersetze alle durch .