Analysis Beispiele

Berechne das Integral Integral von 0 bis pi/2 über (sin(x))/(1-cos(x)) nach x
Schritt 1
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Differenziere .
Schritt 1.1.2
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.3.2
Die Ableitung von nach ist .
Schritt 1.1.3.3
Mutltipliziere mit .
Schritt 1.1.3.4
Mutltipliziere mit .
Schritt 1.1.4
Addiere und .
Schritt 1.2
Setze die untere Grenze für in ein.
Schritt 1.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1.1
Der genau Wert von ist .
Schritt 1.3.1.2
Mutltipliziere mit .
Schritt 1.3.2
Subtrahiere von .
Schritt 1.4
Setze die obere Grenze für in ein.
Schritt 1.5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1.1
Der genau Wert von ist .
Schritt 1.5.1.2
Mutltipliziere mit .
Schritt 1.5.2
Addiere und .
Schritt 1.6
Die für und gefundenen Werte werden dazu verwendet, um das bestimmte Integral zu berechnen.
Schritt 1.7
Schreibe die Aufgabe mithilfe von , und den neuen Grenzen der Integration neu.
Schritt 2
Das Integral von nach ist .
Schritt 3
Berechne bei und .
Schritt 4
Nutze die Quotienteneigenschaft von Logarithmen, .
Schritt 5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 5.2
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 6
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert