Analysis Beispiele

Berechne das Integral Integral über ( Quadratwurzel von x-x^-3)/(x^2) nach x
Schritt 1
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 1.1.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.1.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.2
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 1.3
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Mutltipliziere mit .
Schritt 1.3.2
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.2.1
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.3.2.2
Addiere und .
Schritt 2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Benutze , um als neu zu schreiben.
Schritt 2.2
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.2.3
Kombiniere und .
Schritt 2.2.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.2.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.5.1
Mutltipliziere mit .
Schritt 2.2.5.2
Addiere und .
Schritt 3
Wende die grundlegenden Potenzregeln an.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 3.2
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.2.2
Mutltipliziere mit .
Schritt 4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Wende das Distributivgesetz an.
Schritt 4.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4.4
Kombiniere und .
Schritt 4.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.6
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.6.1
Mutltipliziere mit .
Schritt 4.6.2
Subtrahiere von .
Schritt 4.7
Stelle und um.
Schritt 5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Schreibe als um.
Schritt 5.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 6
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 7
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 8
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 9
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Kombiniere und .
Schritt 9.2
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 10
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 11
Vereinfache.