Analysis Beispiele

미분 구하기 - d/dx (70x)/((3x^2+8)^2)
Schritt 1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 3
Differenziere unter Anwendung der Potenzregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.1.2
Mutltipliziere mit .
Schritt 3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3
Mutltipliziere mit .
Schritt 4
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.3
Ersetze alle durch .
Schritt 5
Vereinfache durch Herausfaktorisieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Mutltipliziere mit .
Schritt 5.2
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Faktorisiere aus heraus.
Schritt 5.2.2
Faktorisiere aus heraus.
Schritt 5.2.3
Faktorisiere aus heraus.
Schritt 6
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Faktorisiere aus heraus.
Schritt 6.2
Kürze den gemeinsamen Faktor.
Schritt 6.3
Forme den Ausdruck um.
Schritt 7
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 8
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 9
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 10
Mutltipliziere mit .
Schritt 11
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 12
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1
Addiere und .
Schritt 12.2
Mutltipliziere mit .
Schritt 13
Potenziere mit .
Schritt 14
Potenziere mit .
Schritt 15
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 16
Addiere und .
Schritt 17
Subtrahiere von .
Schritt 18
Kombiniere und .
Schritt 19
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 19.1
Wende das Distributivgesetz an.
Schritt 19.2
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 19.2.1
Mutltipliziere mit .
Schritt 19.2.2
Mutltipliziere mit .
Schritt 19.3
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 19.3.1
Faktorisiere aus heraus.
Schritt 19.3.2
Faktorisiere aus heraus.
Schritt 19.3.3
Faktorisiere aus heraus.
Schritt 19.4
Faktorisiere aus heraus.
Schritt 19.5
Schreibe als um.
Schritt 19.6
Faktorisiere aus heraus.
Schritt 19.7
Schreibe als um.
Schritt 19.8
Ziehe das Minuszeichen vor den Bruch.