Analysis Beispiele

Third 도함수 구하기 (3-5x)^5
Schritt 1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3
Ersetze alle durch .
Schritt 1.2
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.2.3
Addiere und .
Schritt 1.2.4
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.5
Mutltipliziere mit .
Schritt 1.2.6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.7
Mutltipliziere mit .
Schritt 2
Bestimme die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Ersetze alle durch .
Schritt 2.3
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Mutltipliziere mit .
Schritt 2.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3.4
Addiere und .
Schritt 2.3.5
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.6
Mutltipliziere mit .
Schritt 2.3.7
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.8
Mutltipliziere mit .
Schritt 3
Bestimme die dritte Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.3
Ersetze alle durch .
Schritt 3.3
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Mutltipliziere mit .
Schritt 3.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.3.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.3.4
Addiere und .
Schritt 3.3.5
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3.6
Mutltipliziere mit .
Schritt 3.3.7
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3.8
Mutltipliziere mit .