Analysis Beispiele

Ermittle die Stammfunktion e^x-2x
Schritt 1
Schreibe als Funktion.
Schritt 2
Die Funktion kann bestimmt werden, indem das unbestimmte Integral der Ableitung ermittelt wird.
Schritt 3
Stelle das Integral auf, um zu lösen.
Schritt 4
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 5
Das Integral von nach ist .
Schritt 6
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 8
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Vereinfache.
Schritt 8.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1
Kombiniere und .
Schritt 8.2.2
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.2.1
Faktorisiere aus heraus.
Schritt 8.2.2.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.2.2.1
Faktorisiere aus heraus.
Schritt 8.2.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 8.2.2.2.3
Forme den Ausdruck um.
Schritt 8.2.2.2.4
Dividiere durch .
Schritt 9
Die Lösung ist die Stammfunktion der Funktion .