Analysis Beispiele

Bestimme die Konkavität -1/10x^5-2x^4-12x^3
Schritt 1
Schreibe als Funktion.
Schritt 2
Find the values where the second derivative is equal to .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Bestimme die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.1.2.3
Mutltipliziere mit .
Schritt 2.1.1.2.4
Kombiniere und .
Schritt 2.1.1.2.5
Kombiniere und .
Schritt 2.1.1.2.6
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1.2.6.1
Faktorisiere aus heraus.
Schritt 2.1.1.2.6.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1.2.6.2.1
Faktorisiere aus heraus.
Schritt 2.1.1.2.6.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.1.1.2.6.2.3
Forme den Ausdruck um.
Schritt 2.1.1.2.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.1.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.1.3.3
Mutltipliziere mit .
Schritt 2.1.1.4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.1.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.1.4.3
Mutltipliziere mit .
Schritt 2.1.2
Bestimme die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.2.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.2.2.3
Mutltipliziere mit .
Schritt 2.1.2.2.4
Kombiniere und .
Schritt 2.1.2.2.5
Kombiniere und .
Schritt 2.1.2.2.6
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.2.6.1
Faktorisiere aus heraus.
Schritt 2.1.2.2.6.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.2.6.2.1
Faktorisiere aus heraus.
Schritt 2.1.2.2.6.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.1.2.2.6.2.3
Forme den Ausdruck um.
Schritt 2.1.2.2.6.2.4
Dividiere durch .
Schritt 2.1.2.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.2.3.3
Mutltipliziere mit .
Schritt 2.1.2.4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.2.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.2.4.3
Mutltipliziere mit .
Schritt 2.1.3
Die zweite Ableitung von nach ist .
Schritt 2.2
Setze die zweite Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Setze die zweite Ableitung gleich .
Schritt 2.2.2
Faktorisiere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1.1
Faktorisiere aus heraus.
Schritt 2.2.2.1.2
Faktorisiere aus heraus.
Schritt 2.2.2.1.3
Faktorisiere aus heraus.
Schritt 2.2.2.1.4
Faktorisiere aus heraus.
Schritt 2.2.2.1.5
Faktorisiere aus heraus.
Schritt 2.2.2.2
Faktorisiere unter Verwendung der binomischen Formeln.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.2.1
Schreibe als um.
Schritt 2.2.2.2.2
Überprüfe, ob der mittlere Term das Zweifache des Produkts der Zahlen ist, die im ersten Term und im dritten Term quadriert werden.
Schritt 2.2.2.2.3
Schreibe das Polynom neu.
Schritt 2.2.2.2.4
Faktorisiere mithilfe der trinomischen Formel für das perfekte Quadrat , wobei und .
Schritt 2.2.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 2.2.4
Setze gleich .
Schritt 2.2.5
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.5.1
Setze gleich .
Schritt 2.2.5.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.5.2.1
Setze gleich .
Schritt 2.2.5.2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.2.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 3
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 4
Erzeuge Intervalle um die -Werte, wo die 2. Ableitung 0 ist oder nicht definiert ist.
Schritt 5
Setze eine beliebige Zahl aus dem Intervall in die zweite Ableitung ein und berechne, um die Konkavität zu bestimmen.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 5.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1.1
Potenziere mit .
Schritt 5.2.1.2
Mutltipliziere mit .
Schritt 5.2.1.3
Potenziere mit .
Schritt 5.2.1.4
Mutltipliziere mit .
Schritt 5.2.1.5
Mutltipliziere mit .
Schritt 5.2.2
Vereinfache durch Addieren und Subtrahieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.2.1
Subtrahiere von .
Schritt 5.2.2.2
Addiere und .
Schritt 5.2.3
Die endgültige Lösung ist .
Schritt 5.3
Der Graph ist im Intervall konvex, weil positiv ist.
Konvex im Intervall , da positiv ist
Konvex im Intervall , da positiv ist
Schritt 6
Setze eine beliebige Zahl aus dem Intervall in die zweite Ableitung ein und berechne, um die Konkavität zu bestimmen.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1
Potenziere mit .
Schritt 6.2.1.2
Mutltipliziere mit .
Schritt 6.2.1.3
Potenziere mit .
Schritt 6.2.1.4
Mutltipliziere mit .
Schritt 6.2.1.5
Mutltipliziere mit .
Schritt 6.2.2
Vereinfache durch Addieren und Subtrahieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.2.1
Subtrahiere von .
Schritt 6.2.2.2
Addiere und .
Schritt 6.2.3
Die endgültige Lösung ist .
Schritt 6.3
Der Graph ist im Intervall konvex, weil positiv ist.
Konvex im Intervall , da positiv ist
Konvex im Intervall , da positiv ist
Schritt 7
Setze eine beliebige Zahl aus dem Intervall in die zweite Ableitung ein und berechne, um die Konkavität zu bestimmen.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 7.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1.1
Potenziere mit .
Schritt 7.2.1.2
Mutltipliziere mit .
Schritt 7.2.1.3
Potenziere mit .
Schritt 7.2.1.4
Mutltipliziere mit .
Schritt 7.2.1.5
Mutltipliziere mit .
Schritt 7.2.2
Vereinfache durch Substrahieren von Zahlen.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.2.1
Subtrahiere von .
Schritt 7.2.2.2
Subtrahiere von .
Schritt 7.2.3
Die endgültige Lösung ist .
Schritt 7.3
Der Graph ist im Intervall konkav, weil negativ ist.
Konkav im Intervall , da negativ ist
Konkav im Intervall , da negativ ist
Schritt 8
Der Graph ist konvex, wenn die zweite Ableitung negativ ist und konkav, wenn die zweite Ableitung positiv ist.
Konvex im Intervall , da positiv ist
Konvex im Intervall , da positiv ist
Konkav im Intervall , da negativ ist
Schritt 9