Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Die Funktion kann bestimmt werden, indem das unbestimmte Integral der Ableitung ermittelt wird.
Schritt 3
Stelle das Integral auf, um zu lösen.
Schritt 4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5
Benutze , um als neu zu schreiben.
Schritt 6
Schritt 6.1
Wende das Distributivgesetz an.
Schritt 6.2
Stelle und um.
Schritt 6.3
Potenziere mit .
Schritt 6.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 6.5
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 6.6
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6.7
Addiere und .
Schritt 6.8
Faktorisiere das negative Vorzeichen heraus.
Schritt 6.9
Potenziere mit .
Schritt 6.10
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 6.11
Addiere und .
Schritt 6.12
Stelle und um.
Schritt 7
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 8
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 9
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 10
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 11
Schritt 11.1
Vereinfache.
Schritt 11.1.1
Kombiniere und .
Schritt 11.1.2
Kombiniere und .
Schritt 11.2
Vereinfache.
Schritt 12
Die Lösung ist die Stammfunktion der Funktion .