Analysis Beispiele

Berechne das Integral Integral über (x^7 Quadratwurzel von x)/(x^5)-3 Kubikwurzel von x+5x^4-1/(2x)+e^x+2021 nach x
Schritt 1
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Benutze , um als neu zu schreiben.
Schritt 1.2
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.2.3
Kombiniere und .
Schritt 1.2.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.2.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.5.1
Mutltipliziere mit .
Schritt 1.2.5.2
Addiere und .
Schritt 1.3
Bringe in den Zähler mithilfe der Regel des negativen Exponenten .
Schritt 1.4
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.4.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.4.3
Kombiniere und .
Schritt 1.4.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.4.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.5.1
Mutltipliziere mit .
Schritt 1.4.5.2
Subtrahiere von .
Schritt 2
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 3
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5
Benutze , um als neu zu schreiben.
Schritt 6
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 7
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 8
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 9
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 10
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 11
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Kombiniere und .
Schritt 11.2
Kombiniere und .
Schritt 12
Das Integral von nach ist .
Schritt 13
Das Integral von nach ist .
Schritt 14
Wende die Konstantenregel an.
Schritt 15
Vereinfache.
Schritt 16
Stelle die Terme um.