Analysis Beispiele

Berechne den Grenzwert Limes von (x( Quadratwurzel von x-7))/(x-49) für x gegen 49
Schritt 1
Wende die Regel von de L’Hospital an.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 1.1.2
Berechne den Grenzwert des Zählers.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1
Zerlege den Grenzwert unter Anwendung der Produktregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.1.2.2
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.1.2.3
Bringe den Grenzwert unter das Wurzelzeichen.
Schritt 1.1.2.4
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 1.1.2.5
Berechne die Grenzwerte durch Einsetzen von für alle .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.5.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.1.2.5.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.1.2.6
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.6.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.6.1.1
Schreibe als um.
Schritt 1.1.2.6.1.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 1.1.2.6.1.3
Mutltipliziere mit .
Schritt 1.1.2.6.2
Subtrahiere von .
Schritt 1.1.2.6.3
Mutltipliziere mit .
Schritt 1.1.3
Berechne den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.1
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.1.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.1.3.1.2
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 1.1.3.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.1.3.3
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.3.1
Mutltipliziere mit .
Schritt 1.1.3.3.2
Subtrahiere von .
Schritt 1.1.3.3.3
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.1.3.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 1.3
Bestimme die Ableitung des Zählers und des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Differenziere den Zähler und Nenner.
Schritt 1.3.2
Benutze , um als neu zu schreiben.
Schritt 1.3.3
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 1.3.4
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.6
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.3.7
Kombiniere und .
Schritt 1.3.8
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.3.9
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.9.1
Mutltipliziere mit .
Schritt 1.3.9.2
Subtrahiere von .
Schritt 1.3.10
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.3.11
Kombiniere und .
Schritt 1.3.12
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 1.3.13
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.3.14
Addiere und .
Schritt 1.3.15
Kombiniere und .
Schritt 1.3.16
Bringe in den Zähler mithilfe der Regel des negativen Exponenten .
Schritt 1.3.17
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.17.1
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.17.1.1
Potenziere mit .
Schritt 1.3.17.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.3.17.2
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 1.3.17.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.3.17.4
Subtrahiere von .
Schritt 1.3.18
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.19
Mutltipliziere mit .
Schritt 1.3.20
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.3.21
Kombiniere und .
Schritt 1.3.22
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.3.23
Bringe auf die linke Seite von .
Schritt 1.3.24
Addiere und .
Schritt 1.3.25
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3.26
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.27
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.3.28
Addiere und .
Schritt 1.4
Schreibe als um.
Schritt 1.5
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.5.2
Kombiniere und .
Schritt 1.5.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.6
Dividiere durch .
Schritt 2
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 2.2
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.3
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 2.4
Bringe den Grenzwert unter das Wurzelzeichen.
Schritt 2.5
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 3
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 4
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Schreibe als um.
Schritt 4.1.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 4.1.3
Mutltipliziere mit .
Schritt 4.1.4
Mutltipliziere mit .
Schritt 4.2
Subtrahiere von .
Schritt 4.3
Kombiniere und .
Schritt 5
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: