Analysis Beispiele

미분 구하기 - d/dx y=(1-x)^2sinh(2x)
Schritt 1
Schreibe als um.
Schritt 2
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Wende das Distributivgesetz an.
Schritt 2.2
Wende das Distributivgesetz an.
Schritt 2.3
Wende das Distributivgesetz an.
Schritt 3
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Mutltipliziere mit .
Schritt 3.1.2
Mutltipliziere mit .
Schritt 3.1.3
Mutltipliziere mit .
Schritt 3.1.4
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 3.1.5
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.5.1
Bewege .
Schritt 3.1.5.2
Mutltipliziere mit .
Schritt 3.1.6
Mutltipliziere mit .
Schritt 3.1.7
Mutltipliziere mit .
Schritt 3.2
Subtrahiere von .
Schritt 4
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 5
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 5.2
Die Ableitung von nach ist .
Schritt 5.3
Ersetze alle durch .
Schritt 6
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 6.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 6.3
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1
Mutltipliziere mit .
Schritt 6.3.2
Bringe auf die linke Seite von .
Schritt 6.4
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 6.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 6.6
Addiere und .
Schritt 6.7
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 6.8
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 6.9
Mutltipliziere mit .
Schritt 6.10
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 7
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Wende das Distributivgesetz an.
Schritt 7.2
Wende das Distributivgesetz an.
Schritt 7.3
Wende das Distributivgesetz an.
Schritt 7.4
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 7.4.1
Mutltipliziere mit .
Schritt 7.4.2
Mutltipliziere mit .
Schritt 7.4.3
Bringe auf die linke Seite von .
Schritt 7.5
Stelle die Terme um.