Analysis Beispiele

Berechne das Integral Integral über 5(3-cos(x)^2)^-6sin(2x) nach x
Schritt 1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Differenziere .
Schritt 2.1.2
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.2.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.1.3.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.3.2.3
Ersetze alle durch .
Schritt 2.1.3.3
Die Ableitung von nach ist .
Schritt 2.1.3.4
Mutltipliziere mit .
Schritt 2.1.3.5
Mutltipliziere mit .
Schritt 2.1.4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.4.1
Addiere und .
Schritt 2.1.4.2
Stelle und um.
Schritt 2.1.4.3
Stelle und um.
Schritt 2.1.4.4
Wende die Doppelwinkelfunktion für den Sinus an.
Schritt 2.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 3
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Kombiniere und .
Schritt 4.1.2
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 4.2
Vereinfache.
Schritt 4.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Mutltipliziere mit .
Schritt 4.3.2
Kombiniere und .
Schritt 4.3.3
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.3.1
Faktorisiere aus heraus.
Schritt 4.3.3.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.3.2.1
Faktorisiere aus heraus.
Schritt 4.3.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 4.3.3.2.3
Forme den Ausdruck um.
Schritt 4.3.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 5
Ersetze alle durch .