Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 2
Schritt 2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2
Die Ableitung von nach ist .
Schritt 2.3
Ersetze alle durch .
Schritt 3
Schritt 3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3
Vereinfache den Ausdruck.
Schritt 3.3.1
Mutltipliziere mit .
Schritt 3.3.2
Bringe auf die linke Seite von .
Schritt 3.4
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.6
Addiere und .
Schritt 3.7
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.8
Multipliziere.
Schritt 3.8.1
Mutltipliziere mit .
Schritt 3.8.2
Mutltipliziere mit .
Schritt 4
Schritt 4.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 4.2
Die Ableitung von nach ist .
Schritt 4.3
Ersetze alle durch .
Schritt 5
Schritt 5.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 5.2
Mutltipliziere mit .
Schritt 5.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.4
Mutltipliziere mit .
Schritt 6
Schritt 6.1
Wende das Distributivgesetz an.
Schritt 6.2
Wende das Distributivgesetz an.
Schritt 6.3
Vereinfache jeden Term.
Schritt 6.3.1
Mutltipliziere mit .
Schritt 6.3.2
Mutltipliziere mit .
Schritt 6.3.3
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 6.4
Stelle die Terme um.