Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Addiere und .
Schritt 2
Teile den Zähler und Nenner durch die höchste Potenz von im Nenner, was ist.
Schritt 3
Schritt 3.1
Vereinfache jeden Term.
Schritt 3.1.1
Kürze den gemeinsamen Faktor von .
Schritt 3.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.1.1.2
Dividiere durch .
Schritt 3.1.2
Kürze den gemeinsamen Teiler von und .
Schritt 3.1.2.1
Faktorisiere aus heraus.
Schritt 3.1.2.2
Kürze die gemeinsamen Faktoren.
Schritt 3.1.2.2.1
Faktorisiere aus heraus.
Schritt 3.1.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.1.2.2.3
Forme den Ausdruck um.
Schritt 3.1.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.2
Vereinfache jeden Term.
Schritt 3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.2
Dividiere durch .
Schritt 3.2.2
Kürze den gemeinsamen Teiler von und .
Schritt 3.2.2.1
Faktorisiere aus heraus.
Schritt 3.2.2.2
Kürze die gemeinsamen Faktoren.
Schritt 3.2.2.2.1
Faktorisiere aus heraus.
Schritt 3.2.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.2.2.2.3
Forme den Ausdruck um.
Schritt 3.2.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.2.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.3
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 3.4
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 3.5
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 3.6
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 4
Da sein Zähler sich einer reellen Zahl nähert, während sein Nenner unbegrenzt ist, nähert sich der Bruch .
Schritt 5
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 6
Da sein Zähler sich einer reellen Zahl nähert, während sein Nenner unbegrenzt ist, nähert sich der Bruch .
Schritt 7
Schritt 7.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 7.2
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 7.3
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 8
Da sein Zähler sich einer reellen Zahl nähert, während sein Nenner unbegrenzt ist, nähert sich der Bruch .
Schritt 9
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 10
Da sein Zähler sich einer reellen Zahl nähert, während sein Nenner unbegrenzt ist, nähert sich der Bruch .
Schritt 11
Schritt 11.1
Vereinfache den Zähler.
Schritt 11.1.1
Mutltipliziere mit .
Schritt 11.1.2
Mutltipliziere mit .
Schritt 11.1.3
Addiere und .
Schritt 11.1.4
Addiere und .
Schritt 11.2
Vereinfache den Nenner.
Schritt 11.2.1
Mutltipliziere mit .
Schritt 11.2.2
Mutltipliziere mit .
Schritt 11.2.3
Addiere und .
Schritt 11.2.4
Addiere und .
Schritt 11.3
Kürze den gemeinsamen Teiler von und .
Schritt 11.3.1
Faktorisiere aus heraus.
Schritt 11.3.2
Kürze die gemeinsamen Faktoren.
Schritt 11.3.2.1
Faktorisiere aus heraus.
Schritt 11.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 11.3.2.3
Forme den Ausdruck um.
Schritt 12
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: