Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 2
Schritt 2.1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Schritt 2.1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 2.1.2
Berechne den Grenzwert des Zählers.
Schritt 2.1.2.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.1.2.2
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 2.1.2.3
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.1.2.4
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 2.1.2.5
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 2.1.2.6
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.1.2.7
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 2.1.2.8
Berechne die Grenzwerte durch Einsetzen von für alle .
Schritt 2.1.2.8.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 2.1.2.8.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 2.1.2.9
Vereinfache die Lösung.
Schritt 2.1.2.9.1
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 2.1.2.9.1.1
Addiere und .
Schritt 2.1.2.9.1.2
Addiere und .
Schritt 2.1.2.9.2
Vereinfache jeden Term.
Schritt 2.1.2.9.2.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 2.1.2.9.2.2
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 2.1.2.9.3
Addiere und .
Schritt 2.1.3
Berechne den Grenzwert des Nenners.
Schritt 2.1.3.1
Berechne den Grenzwert.
Schritt 2.1.3.1.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.1.3.1.2
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 2.1.3.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 2.1.3.3
Addiere und .
Schritt 2.1.3.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 2.1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 2.2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 2.3
Bestimme die Ableitung des Zählers und des Nenners.
Schritt 2.3.1
Differenziere den Zähler und Nenner.
Schritt 2.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3.3
Berechne .
Schritt 2.3.3.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.3.3.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.3.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.3.1.3
Ersetze alle durch .
Schritt 2.3.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3.3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.3.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3.3.5
Addiere und .
Schritt 2.3.3.6
Mutltipliziere mit .
Schritt 2.3.4
Berechne .
Schritt 2.3.4.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.3.4.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.4.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.4.1.3
Ersetze alle durch .
Schritt 2.3.4.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3.4.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.4.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3.4.5
Addiere und .
Schritt 2.3.4.6
Mutltipliziere mit .
Schritt 2.3.5
Faktorisiere aus heraus.
Schritt 2.3.5.1
Faktorisiere aus heraus.
Schritt 2.3.5.2
Faktorisiere aus heraus.
Schritt 2.3.5.3
Faktorisiere aus heraus.
Schritt 2.3.6
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3.7
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.8
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3.9
Addiere und .
Schritt 2.4
Dividiere durch .
Schritt 3
Schritt 3.1
Zerlege den Grenzwert unter Anwendung der Produktregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 3.2
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 3.3
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 3.4
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 3.5
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 3.6
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 3.7
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 3.8
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 3.9
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 3.10
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 4
Schritt 4.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 4.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 5
Schritt 5.1
Addiere und .
Schritt 5.2
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 5.3
Mutltipliziere mit .
Schritt 5.4
Addiere und .
Schritt 5.5
Vereinfache jeden Term.
Schritt 5.5.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 5.5.2
Mutltipliziere mit .
Schritt 5.6
Addiere und .
Schritt 5.7
Mutltipliziere mit .