Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Schritt 1.1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 1.1.2
Berechne den Grenzwert des Zählers.
Schritt 1.1.2.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.1.2.2
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 1.1.2.3
Zerlege den Grenzwert unter Anwendung der Produktregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.1.2.4
Bringe den Grenzwert in die trigonometrische Funktion, da der Kosinus stetig ist.
Schritt 1.1.2.5
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 1.1.2.6
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 1.1.2.7
Bringe den Grenzwert in die trigonometrische Funktion, da der Sinus stetig ist.
Schritt 1.1.2.8
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 1.1.2.9
Berechne die Grenzwerte durch Einsetzen von für alle .
Schritt 1.1.2.9.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.1.2.9.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.1.2.9.3
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.1.2.10
Vereinfache die Lösung.
Schritt 1.1.2.10.1
Vereinfache jeden Term.
Schritt 1.1.2.10.1.1
Mutltipliziere mit .
Schritt 1.1.2.10.1.2
Mutltipliziere mit .
Schritt 1.1.2.10.1.3
Der genau Wert von ist .
Schritt 1.1.2.10.1.4
Mutltipliziere mit .
Schritt 1.1.2.10.1.5
Mutltipliziere mit .
Schritt 1.1.2.10.1.6
Der genau Wert von ist .
Schritt 1.1.2.10.1.7
Mutltipliziere mit .
Schritt 1.1.2.10.2
Addiere und .
Schritt 1.1.3
Berechne den Grenzwert des Nenners.
Schritt 1.1.3.1
Berechne den Grenzwert.
Schritt 1.1.3.1.1
Bringe den Grenzwert in die trigonometrische Funktion, da der Tangens stetig ist.
Schritt 1.1.3.1.2
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 1.1.3.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.1.3.3
Vereinfache die Lösung.
Schritt 1.1.3.3.1
Mutltipliziere mit .
Schritt 1.1.3.3.2
Der genau Wert von ist .
Schritt 1.1.3.3.3
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.1.3.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 1.3
Bestimme die Ableitung des Zählers und des Nenners.
Schritt 1.3.1
Differenziere den Zähler und Nenner.
Schritt 1.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3.3
Berechne .
Schritt 1.3.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.3.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 1.3.3.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.3.3.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.3.3.3.2
Die Ableitung von nach ist .
Schritt 1.3.3.3.3
Ersetze alle durch .
Schritt 1.3.3.4
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.3.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.3.6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.3.7
Mutltipliziere mit .
Schritt 1.3.3.8
Mutltipliziere mit .
Schritt 1.3.3.9
Mutltipliziere mit .
Schritt 1.3.4
Berechne .
Schritt 1.3.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.4.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.3.4.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.3.4.2.2
Die Ableitung von nach ist .
Schritt 1.3.4.2.3
Ersetze alle durch .
Schritt 1.3.4.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.4.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.4.5
Mutltipliziere mit .
Schritt 1.3.4.6
Bringe auf die linke Seite von .
Schritt 1.3.4.7
Mutltipliziere mit .
Schritt 1.3.5
Vereinfache.
Schritt 1.3.5.1
Wende das Distributivgesetz an.
Schritt 1.3.5.2
Mutltipliziere mit .
Schritt 1.3.6
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.3.6.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.3.6.2
Die Ableitung von nach ist .
Schritt 1.3.6.3
Ersetze alle durch .
Schritt 1.3.7
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.8
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.9
Mutltipliziere mit .
Schritt 1.3.10
Bringe auf die linke Seite von .
Schritt 1.4
Kürze den gemeinsamen Teiler von und .
Schritt 1.4.1
Faktorisiere aus heraus.
Schritt 1.4.2
Faktorisiere aus heraus.
Schritt 1.4.3
Faktorisiere aus heraus.
Schritt 1.4.4
Faktorisiere aus heraus.
Schritt 1.4.5
Faktorisiere aus heraus.
Schritt 1.4.6
Kürze die gemeinsamen Faktoren.
Schritt 1.4.6.1
Faktorisiere aus heraus.
Schritt 1.4.6.2
Kürze den gemeinsamen Faktor.
Schritt 1.4.6.3
Forme den Ausdruck um.
Schritt 2
Schritt 2.1
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.2
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.3
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 2.4
Zerlege den Grenzwert unter Anwendung der Produktregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.5
Bringe den Grenzwert in die trigonometrische Funktion, da der Sinus stetig ist.
Schritt 2.6
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 2.7
Bringe den Grenzwert in die trigonometrische Funktion, da der Kosinus stetig ist.
Schritt 2.8
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 2.9
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 2.10
Bringe den Grenzwert in die trigonometrische Funktion, da der Kosinus stetig ist.
Schritt 2.11
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 2.12
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 2.13
Bringe den Grenzwert in die trigonometrische Funktion, da der Sekans ist stetig.
Schritt 2.14
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 3
Schritt 3.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 3.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 3.3
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 3.4
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 3.5
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 4
Schritt 4.1
Vereinfache den Zähler.
Schritt 4.1.1
Mutltipliziere mit .
Schritt 4.1.2
Mutltipliziere mit .
Schritt 4.1.3
Der genau Wert von ist .
Schritt 4.1.4
Mutltipliziere mit .
Schritt 4.1.5
Mutltipliziere mit .
Schritt 4.1.6
Der genau Wert von ist .
Schritt 4.1.7
Mutltipliziere mit .
Schritt 4.1.8
Der genau Wert von ist .
Schritt 4.1.9
Mutltipliziere mit .
Schritt 4.1.10
Addiere und .
Schritt 4.1.11
Addiere und .
Schritt 4.2
Vereinfache den Nenner.
Schritt 4.2.1
Mutltipliziere mit .
Schritt 4.2.2
Der genau Wert von ist .
Schritt 4.2.3
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 4.3
Dividiere durch .