Analysis Beispiele

Berechne das Integral Integral über (1/(x^3)-1/(x^2)) nach x
Schritt 1
Entferne die Klammern.
Schritt 2
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 3
Wende die grundlegenden Potenzregeln an.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 3.2
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.2.2
Mutltipliziere mit .
Schritt 4
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 5
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 6
Wende die grundlegenden Potenzregeln an.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 6.2
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 6.2.2
Mutltipliziere mit .
Schritt 7
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 8
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Vereinfache.
Schritt 8.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1
Mutltipliziere mit .
Schritt 8.2.2
Bringe auf die linke Seite von .
Schritt 8.2.3
Mutltipliziere mit .
Schritt 8.2.4
Mutltipliziere mit .