Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Die Funktion kann bestimmt werden, indem das unbestimmte Integral der Ableitung ermittelt wird.
Schritt 2
Stelle das Integral auf, um zu lösen.
Schritt 3
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5
Benutze , um als neu zu schreiben.
Schritt 6
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 7
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 8
Benutze , um als neu zu schreiben.
Schritt 9
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 10
Schritt 10.1
Vereinfache.
Schritt 10.2
Vereinfache.
Schritt 10.2.1
Kombiniere und .
Schritt 10.2.2
Mutltipliziere mit .
Schritt 10.2.3
Kürze den gemeinsamen Teiler von und .
Schritt 10.2.3.1
Faktorisiere aus heraus.
Schritt 10.2.3.2
Kürze die gemeinsamen Faktoren.
Schritt 10.2.3.2.1
Faktorisiere aus heraus.
Schritt 10.2.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 10.2.3.2.3
Forme den Ausdruck um.
Schritt 10.2.3.2.4
Dividiere durch .
Schritt 10.2.4
Kombiniere und .
Schritt 10.2.5
Mutltipliziere mit .
Schritt 10.2.6
Kürze den gemeinsamen Teiler von und .
Schritt 10.2.6.1
Faktorisiere aus heraus.
Schritt 10.2.6.2
Kürze die gemeinsamen Faktoren.
Schritt 10.2.6.2.1
Faktorisiere aus heraus.
Schritt 10.2.6.2.2
Kürze den gemeinsamen Faktor.
Schritt 10.2.6.2.3
Forme den Ausdruck um.
Schritt 10.2.6.2.4
Dividiere durch .
Schritt 11
Die Lösung ist die Stammfunktion der Funktion .