Analysis Beispiele

Berechne den Grenzwert Limes von (3- Quadratwurzel von x)/(27- Quadratwurzel von x^3) für x gegen 9
Schritt 1
Wende die Regel von de L’Hospital an.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 1.1.2
Berechne den Grenzwert des Zählers.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.1.2.1.2
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 1.1.2.1.3
Bringe den Grenzwert unter das Wurzelzeichen.
Schritt 1.1.2.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.1.2.3
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.3.1.1
Schreibe als um.
Schritt 1.1.2.3.1.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 1.1.2.3.1.3
Mutltipliziere mit .
Schritt 1.1.2.3.2
Subtrahiere von .
Schritt 1.1.3
Berechne den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.1
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.1.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.1.3.1.2
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 1.1.3.1.3
Bringe den Grenzwert unter das Wurzelzeichen.
Schritt 1.1.3.1.4
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 1.1.3.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.1.3.3
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.3.1.1
Potenziere mit .
Schritt 1.1.3.3.1.2
Schreibe als um.
Schritt 1.1.3.3.1.3
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 1.1.3.3.1.4
Mutltipliziere mit .
Schritt 1.1.3.3.2
Subtrahiere von .
Schritt 1.1.3.3.3
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.1.3.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 1.3
Bestimme die Ableitung des Zählers und des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Differenziere den Zähler und Nenner.
Schritt 1.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.3.4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.4.1
Benutze , um als neu zu schreiben.
Schritt 1.3.4.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.4.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.4.4
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.3.4.5
Kombiniere und .
Schritt 1.3.4.6
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.3.4.7
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.4.7.1
Mutltipliziere mit .
Schritt 1.3.4.7.2
Subtrahiere von .
Schritt 1.3.4.8
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.3.4.9
Kombiniere und .
Schritt 1.3.4.10
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 1.3.5
Subtrahiere von .
Schritt 1.3.6
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3.7
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.3.8
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.8.1
Benutze , um als neu zu schreiben.
Schritt 1.3.8.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.8.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.8.4
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.3.8.5
Kombiniere und .
Schritt 1.3.8.6
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.3.8.7
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.8.7.1
Mutltipliziere mit .
Schritt 1.3.8.7.2
Subtrahiere von .
Schritt 1.3.8.8
Kombiniere und .
Schritt 1.3.9
Subtrahiere von .
Schritt 1.4
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 1.5
Wandle die gebrochene Exponenten in Wurzelausdrücke um.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1
Schreibe als um.
Schritt 1.5.2
Schreibe als um.
Schritt 1.6
Vereinige Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.6.1
Mutltipliziere mit .
Schritt 1.6.2
Mutltipliziere mit .
Schritt 1.6.3
Mutltipliziere mit .
Schritt 1.6.4
Mutltipliziere mit .
Schritt 1.6.5
Potenziere mit .
Schritt 1.6.6
Potenziere mit .
Schritt 1.6.7
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.6.8
Addiere und .
Schritt 1.7
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.7.1
Faktorisiere aus heraus.
Schritt 1.7.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.7.2.1
Faktorisiere aus heraus.
Schritt 1.7.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.7.2.3
Forme den Ausdruck um.
Schritt 2
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 2.2
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.3
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 2.4
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 2.5
Bringe den Grenzwert unter das Wurzelzeichen.
Schritt 3
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 4
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Kombinieren.
Schritt 4.2
Mutltipliziere mit .
Schritt 4.3
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Schreibe als um.
Schritt 4.3.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 4.3.3
Potenziere mit .
Schritt 4.4
Mutltipliziere mit .
Schritt 5
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: