Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Multipliziere, um den Zähler zu rationalisieren.
Schritt 2
Schritt 2.1
Multipliziere den Zähler unter Verwendung der FOIL-Methode aus.
Schritt 2.2
Vereinfache.
Schritt 2.2.1
Subtrahiere von .
Schritt 2.2.2
Addiere und .
Schritt 3
Teile den Zähler und Nenner durch die höchste Potenz von im Nenner, was ist.
Schritt 4
Schritt 4.1
Kürze den gemeinsamen Faktor von .
Schritt 4.1.1
Kürze den gemeinsamen Faktor.
Schritt 4.1.2
Dividiere durch .
Schritt 4.2
Vereinfache Terme.
Schritt 4.2.1
Kürze den gemeinsamen Faktor von .
Schritt 4.2.2
Vereinfache jeden Term.
Schritt 4.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 4.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.2.1.2
Forme den Ausdruck um.
Schritt 4.2.2.2
Kürze den gemeinsamen Teiler von und .
Schritt 4.2.2.2.1
Faktorisiere aus heraus.
Schritt 4.2.2.2.2
Kürze die gemeinsamen Faktoren.
Schritt 4.2.2.2.2.1
Faktorisiere aus heraus.
Schritt 4.2.2.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 4.2.2.2.2.3
Forme den Ausdruck um.
Schritt 4.3
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 4.4
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 4.5
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 5
Da sein Zähler sich einer reellen Zahl nähert, während sein Nenner unbegrenzt ist, nähert sich der Bruch .
Schritt 6
Schritt 6.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 6.2
Bringe den Grenzwert unter das Wurzelzeichen.
Schritt 6.3
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 6.4
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 6.5
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 7
Da sein Zähler sich einer reellen Zahl nähert, während sein Nenner unbegrenzt ist, nähert sich der Bruch .
Schritt 8
Da sein Zähler sich einer reellen Zahl nähert, während sein Nenner unbegrenzt ist, nähert sich der Bruch .
Schritt 9
Schritt 9.1
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 9.2
Vereinfache die Lösung.
Schritt 9.2.1
Addiere und .
Schritt 9.2.2
Vereinfache den Nenner.
Schritt 9.2.2.1
Mutltipliziere mit .
Schritt 9.2.2.2
Addiere und .
Schritt 9.2.2.3
Addiere und .
Schritt 9.2.2.4
Jede Wurzel von ist .
Schritt 9.2.2.5
Addiere und .
Schritt 10
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: