Analysis Beispiele

Berechne das Integral Integral von 0 bis pi/6 über (sin(2x))/(cos(2x)^2) nach x
Schritt 1
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Differenziere .
Schritt 1.1.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.1.2.2
Die Ableitung von nach ist .
Schritt 1.1.2.3
Ersetze alle durch .
Schritt 1.1.3
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.3.2
Mutltipliziere mit .
Schritt 1.1.3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.4
Mutltipliziere mit .
Schritt 1.2
Setze die untere Grenze für in ein.
Schritt 1.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Mutltipliziere mit .
Schritt 1.3.2
Der genau Wert von ist .
Schritt 1.4
Setze die obere Grenze für in ein.
Schritt 1.5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1.1
Faktorisiere aus heraus.
Schritt 1.5.1.2
Kürze den gemeinsamen Faktor.
Schritt 1.5.1.3
Forme den Ausdruck um.
Schritt 1.5.2
Der genau Wert von ist .
Schritt 1.6
Die für und gefundenen Werte werden dazu verwendet, um das bestimmte Integral zu berechnen.
Schritt 1.7
Schreibe die Aufgabe mithilfe von , und den neuen Grenzen der Integration neu.
Schritt 2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.2
Mutltipliziere mit .
Schritt 2.3
Bringe auf die linke Seite von .
Schritt 3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5
Wende die grundlegenden Potenzregeln an.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 5.2
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 5.2.2
Mutltipliziere mit .
Schritt 6
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 7
Substituiere und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Berechne bei und .
Schritt 7.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Ändere das Vorzeichen des Exponenten durch Umschreiben der Basis als ihren Kehrwert.
Schritt 7.2.2
Mutltipliziere mit .
Schritt 7.2.3
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 7.2.4
Addiere und .
Schritt 7.2.5
Mutltipliziere mit .
Schritt 7.2.6
Mutltipliziere mit .
Schritt 8
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: