Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Sei , mit . Dann ist . Beachte, dass wegen , positiv ist.
Schritt 2
Schritt 2.1
Vereinfache .
Schritt 2.1.1
Vereinfache jeden Term.
Schritt 2.1.1.1
Wende die Produktregel auf an.
Schritt 2.1.1.2
Potenziere mit .
Schritt 2.1.1.3
Mutltipliziere mit .
Schritt 2.1.2
Faktorisiere aus heraus.
Schritt 2.1.3
Faktorisiere aus heraus.
Schritt 2.1.4
Faktorisiere aus heraus.
Schritt 2.1.5
Wende den trigonometrischen Pythagoras an.
Schritt 2.1.6
Schreibe als um.
Schritt 2.1.7
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 2.2
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Schritt 2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.2
Forme den Ausdruck um.
Schritt 2.2.2
Vereinfache.
Schritt 2.2.2.1
Faktorisiere aus heraus.
Schritt 2.2.2.2
Wende die Produktregel auf an.
Schritt 2.2.2.3
Potenziere mit .
Schritt 3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4
Benutze die Halbwinkelformel, um als neu zu schreiben.
Schritt 5
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 6
Schritt 6.1
Kombiniere und .
Schritt 6.2
Kürze den gemeinsamen Teiler von und .
Schritt 6.2.1
Faktorisiere aus heraus.
Schritt 6.2.2
Kürze die gemeinsamen Faktoren.
Schritt 6.2.2.1
Faktorisiere aus heraus.
Schritt 6.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 6.2.2.3
Forme den Ausdruck um.
Schritt 6.2.2.4
Dividiere durch .
Schritt 7
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 8
Wende die Konstantenregel an.
Schritt 9
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 10
Schritt 10.1
Es sei . Ermittle .
Schritt 10.1.1
Differenziere .
Schritt 10.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 10.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 10.1.4
Mutltipliziere mit .
Schritt 10.2
Setze die untere Grenze für in ein.
Schritt 10.3
Mutltipliziere mit .
Schritt 10.4
Setze die obere Grenze für in ein.
Schritt 10.5
Kürze den gemeinsamen Faktor von .
Schritt 10.5.1
Faktorisiere aus heraus.
Schritt 10.5.2
Kürze den gemeinsamen Faktor.
Schritt 10.5.3
Forme den Ausdruck um.
Schritt 10.6
Die für und gefundenen Werte werden dazu verwendet, um das bestimmte Integral zu berechnen.
Schritt 10.7
Schreibe die Aufgabe mithilfe von , und den neuen Grenzen der Integration neu.
Schritt 11
Kombiniere und .
Schritt 12
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 13
Das Integral von nach ist .
Schritt 14
Schritt 14.1
Berechne bei und .
Schritt 14.2
Vereinfache den Ausdruck.
Schritt 14.2.1
Berechne bei und .
Schritt 14.2.2
Addiere und .
Schritt 14.3
Vereinfache.
Schritt 14.3.1
Der genau Wert von ist .
Schritt 14.3.2
Der genau Wert von ist .
Schritt 14.3.3
Mutltipliziere mit .
Schritt 14.3.4
Addiere und .
Schritt 14.3.5
Mutltipliziere mit .
Schritt 14.3.6
Mutltipliziere mit .
Schritt 14.4
Vereinfache.
Schritt 14.4.1
Wende das Distributivgesetz an.
Schritt 14.4.2
Kürze den gemeinsamen Faktor von .
Schritt 14.4.2.1
Faktorisiere aus heraus.
Schritt 14.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 14.4.2.3
Forme den Ausdruck um.
Schritt 14.4.3
Kürze den gemeinsamen Faktor von .
Schritt 14.4.3.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 14.4.3.2
Faktorisiere aus heraus.
Schritt 14.4.3.3
Kürze den gemeinsamen Faktor.
Schritt 14.4.3.4
Forme den Ausdruck um.
Schritt 14.4.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 15
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: