Analysis Beispiele

미분 구하기 - d/dx 2cos(x^2+2)^2
Schritt 1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3
Ersetze alle durch .
Schritt 3
Mutltipliziere mit .
Schritt 4
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 4.2
Die Ableitung von nach ist .
Schritt 4.3
Ersetze alle durch .
Schritt 5
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Mutltipliziere mit .
Schritt 5.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 5.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 5.5
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.1
Addiere und .
Schritt 5.5.2
Mutltipliziere mit .
Schritt 5.5.3
Stelle die Faktoren von um.