Analysis Beispiele

미분 구하기 - d/dx 4x^2e^(-x^2)-2e^(-x^2)
Schritt 1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 2.3.3
Ersetze alle durch .
Schritt 2.4
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.7
Mutltipliziere mit .
Schritt 2.8
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.8.1
Bewege .
Schritt 2.8.2
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.8.2.1
Potenziere mit .
Schritt 2.8.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.8.3
Addiere und .
Schritt 2.9
Bringe auf die linke Seite von .
Schritt 3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 3.2.3
Ersetze alle durch .
Schritt 3.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.5
Mutltipliziere mit .
Schritt 3.6
Mutltipliziere mit .
Schritt 4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Wende das Distributivgesetz an.
Schritt 4.2
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Mutltipliziere mit .
Schritt 4.2.2
Mutltipliziere mit .
Schritt 4.2.3
Addiere und .
Schritt 4.3
Stelle die Terme um.
Schritt 4.4
Stelle die Faktoren in um.