Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Schritt 1.1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 1.1.2
Berechne den Grenzwert des Zählers.
Schritt 1.1.2.1
Berechne den Grenzwert.
Schritt 1.1.2.1.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.1.2.1.2
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 1.1.2.1.3
Bringe den Grenzwert unter das Wurzelzeichen.
Schritt 1.1.2.1.4
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.1.2.1.5
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 1.1.2.1.6
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 1.1.2.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.1.2.3
Vereinfache die Lösung.
Schritt 1.1.2.3.1
Vereinfache jeden Term.
Schritt 1.1.2.3.1.1
Addiere und .
Schritt 1.1.2.3.1.2
Schreibe als um.
Schritt 1.1.2.3.1.3
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 1.1.2.3.1.4
Mutltipliziere mit .
Schritt 1.1.2.3.2
Addiere und .
Schritt 1.1.3
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 1.3
Bestimme die Ableitung des Zählers und des Nenners.
Schritt 1.3.1
Differenziere den Zähler und Nenner.
Schritt 1.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3.3
Berechne .
Schritt 1.3.3.1
Benutze , um als neu zu schreiben.
Schritt 1.3.3.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.3.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.3.3.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.3.3.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.3.3.3
Ersetze alle durch .
Schritt 1.3.3.4
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3.3.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.3.6
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.3.3.7
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.3.3.8
Kombiniere und .
Schritt 1.3.3.9
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.3.3.10
Vereinfache den Zähler.
Schritt 1.3.3.10.1
Mutltipliziere mit .
Schritt 1.3.3.10.2
Subtrahiere von .
Schritt 1.3.3.11
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.3.3.12
Addiere und .
Schritt 1.3.3.13
Kombiniere und .
Schritt 1.3.3.14
Mutltipliziere mit .
Schritt 1.3.3.15
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 1.3.3.16
Kombiniere und .
Schritt 1.3.3.17
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.3.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.3.5
Addiere und .
Schritt 1.3.6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.4
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 1.5
Schreibe als um.
Schritt 1.6
Mutltipliziere mit .
Schritt 2
Schritt 2.1
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 2.2
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 2.3
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.4
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 2.5
Bringe den Grenzwert unter das Wurzelzeichen.
Schritt 2.6
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.7
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 3
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 4
Schritt 4.1
Vereinfache den Nenner.
Schritt 4.1.1
Addiere und .
Schritt 4.1.2
Schreibe als um.
Schritt 4.1.3
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 4.2
Multipliziere .
Schritt 4.2.1
Mutltipliziere mit .
Schritt 4.2.2
Mutltipliziere mit .
Schritt 5
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: