Analysis Beispiele

미분 구하기 - d/dx 1+1/(x^2)
Schritt 1
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Schreibe als um.
Schritt 2.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Ersetze alle durch .
Schritt 2.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.4
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.4.2
Mutltipliziere mit .
Schritt 2.5
Mutltipliziere mit .
Schritt 2.6
Potenziere mit .
Schritt 2.7
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.8
Subtrahiere von .
Schritt 3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 3.2
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Kombiniere und .
Schritt 3.2.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.2.3
Subtrahiere von .