Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3
Ersetze alle durch .
Schritt 1.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.3
Kombiniere und .
Schritt 1.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.5
Vereinfache den Zähler.
Schritt 1.5.1
Mutltipliziere mit .
Schritt 1.5.2
Subtrahiere von .
Schritt 1.6
Kombiniere Brüche.
Schritt 1.6.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.6.2
Kombiniere und .
Schritt 1.6.3
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 1.7
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.8
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.9
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.10
Vereinfache den Ausdruck.
Schritt 1.10.1
Addiere und .
Schritt 1.10.2
Mutltipliziere mit .
Schritt 2
Schritt 2.1
Differenziere unter Anwendung der Faktorregel.
Schritt 2.1.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.2
Wende die grundlegenden Potenzregeln an.
Schritt 2.1.2.1
Schreibe als um.
Schritt 2.1.2.2
Multipliziere die Exponenten in .
Schritt 2.1.2.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.1.2.2.2
Multipliziere .
Schritt 2.1.2.2.2.1
Kombiniere und .
Schritt 2.1.2.2.2.2
Mutltipliziere mit .
Schritt 2.1.2.2.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Ersetze alle durch .
Schritt 2.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.4
Kombiniere und .
Schritt 2.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.6
Vereinfache den Zähler.
Schritt 2.6.1
Mutltipliziere mit .
Schritt 2.6.2
Subtrahiere von .
Schritt 2.7
Kombiniere Brüche.
Schritt 2.7.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.7.2
Kombiniere und .
Schritt 2.7.3
Vereinfache den Ausdruck.
Schritt 2.7.3.1
Bringe auf die linke Seite von .
Schritt 2.7.3.2
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 2.7.4
Mutltipliziere mit .
Schritt 2.7.5
Mutltipliziere mit .
Schritt 2.8
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.9
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.10
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.11
Vereinfache den Ausdruck.
Schritt 2.11.1
Addiere und .
Schritt 2.11.2
Mutltipliziere mit .
Schritt 3
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 4
Schritt 4.1
Bestimme die erste Ableitung.
Schritt 4.1.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 4.1.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 4.1.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.1.3
Ersetze alle durch .
Schritt 4.1.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4.1.3
Kombiniere und .
Schritt 4.1.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.1.5
Vereinfache den Zähler.
Schritt 4.1.5.1
Mutltipliziere mit .
Schritt 4.1.5.2
Subtrahiere von .
Schritt 4.1.6
Kombiniere Brüche.
Schritt 4.1.6.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.1.6.2
Kombiniere und .
Schritt 4.1.6.3
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 4.1.7
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.1.8
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.9
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.1.10
Vereinfache den Ausdruck.
Schritt 4.1.10.1
Addiere und .
Schritt 4.1.10.2
Mutltipliziere mit .
Schritt 4.2
Die erste Ableitung von nach ist .
Schritt 5
Schritt 5.1
Setze die erste Ableitung gleich .
Schritt 5.2
Setze den Zähler gleich Null.
Schritt 5.3
Da , gibt es keine Lösungen.
Keine Lösung
Keine Lösung
Schritt 6
Schritt 6.1
Wende die Regel an, um die Potenz als Wurzel umzuschreiben.
Schritt 6.2
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 6.3
Löse nach auf.
Schritt 6.3.1
Um die Wurzel auf der linken Seite der Gleichung zu entfernen, erhebe beide Seiten der Gleichung zur dritten Potenz.
Schritt 6.3.2
Vereinfache jede Seite der Gleichung.
Schritt 6.3.2.1
Benutze , um als neu zu schreiben.
Schritt 6.3.2.2
Vereinfache die linke Seite.
Schritt 6.3.2.2.1
Vereinfache .
Schritt 6.3.2.2.1.1
Wende die Produktregel auf an.
Schritt 6.3.2.2.1.2
Potenziere mit .
Schritt 6.3.2.2.1.3
Multipliziere die Exponenten in .
Schritt 6.3.2.2.1.3.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 6.3.2.2.1.3.2
Kürze den gemeinsamen Faktor von .
Schritt 6.3.2.2.1.3.2.1
Kürze den gemeinsamen Faktor.
Schritt 6.3.2.2.1.3.2.2
Forme den Ausdruck um.
Schritt 6.3.2.3
Vereinfache die rechte Seite.
Schritt 6.3.2.3.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 6.3.3
Löse nach auf.
Schritt 6.3.3.1
Teile jeden Ausdruck in durch und vereinfache.
Schritt 6.3.3.1.1
Teile jeden Ausdruck in durch .
Schritt 6.3.3.1.2
Vereinfache die linke Seite.
Schritt 6.3.3.1.2.1
Kürze den gemeinsamen Faktor von .
Schritt 6.3.3.1.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 6.3.3.1.2.1.2
Dividiere durch .
Schritt 6.3.3.1.3
Vereinfache die rechte Seite.
Schritt 6.3.3.1.3.1
Dividiere durch .
Schritt 6.3.3.2
Setze gleich .
Schritt 6.3.3.3
Addiere zu beiden Seiten der Gleichung.
Schritt 7
Kritische Punkte zum auswerten.
Schritt 8
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 9
Schritt 9.1
Vereinfache den Ausdruck.
Schritt 9.1.1
Subtrahiere von .
Schritt 9.1.2
Schreibe als um.
Schritt 9.1.3
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 9.2
Kürze den gemeinsamen Faktor von .
Schritt 9.2.1
Kürze den gemeinsamen Faktor.
Schritt 9.2.2
Forme den Ausdruck um.
Schritt 9.3
Vereinfache den Ausdruck.
Schritt 9.3.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 9.3.2
Mutltipliziere mit .
Schritt 9.3.3
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 9.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Undefiniert
Schritt 10
Schritt 10.1
Teile in separate Intervalle um die -Werte herum auf, die die erste Ableitung zu oder nicht definiert machen.
Schritt 10.2
Setze eine beliebige Zahl, wie , aus dem Intervall in die erste Ableitung ein, um zu überprüfen, ob das Ergebnis negativ oder positiv ist.
Schritt 10.2.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 10.2.2
Vereinfache das Ergebnis.
Schritt 10.2.2.1
Vereinfache den Nenner.
Schritt 10.2.2.1.1
Subtrahiere von .
Schritt 10.2.2.1.2
Schreibe als um.
Schritt 10.2.2.1.3
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 10.2.2.1.4
Kürze den gemeinsamen Faktor von .
Schritt 10.2.2.1.4.1
Kürze den gemeinsamen Faktor.
Schritt 10.2.2.1.4.2
Forme den Ausdruck um.
Schritt 10.2.2.1.5
Potenziere mit .
Schritt 10.2.2.2
Mutltipliziere mit .
Schritt 10.2.2.3
Die endgültige Lösung ist .
Schritt 10.3
Setze eine beliebige Zahl, wie , aus dem Intervall in die erste Ableitung ein, um zu überprüfen, ob das Ergebnis negativ oder positiv ist.
Schritt 10.3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 10.3.2
Vereinfache das Ergebnis.
Schritt 10.3.2.1
Subtrahiere von .
Schritt 10.3.2.2
Multipliziere mit durch Addieren der Exponenten.
Schritt 10.3.2.2.1
Mutltipliziere mit .
Schritt 10.3.2.2.1.1
Potenziere mit .
Schritt 10.3.2.2.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 10.3.2.2.2
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 10.3.2.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 10.3.2.2.4
Addiere und .
Schritt 10.3.2.3
Die endgültige Lösung ist .
Schritt 10.4
Da die erste Ableitung das Vorzeichen um nicht gewechselt hat, ist dies kein lokales Maximum oder Minimum.
Kein lokales Maximum oder Minimum
Schritt 10.5
Keine lokalen Maxima oder Minima für gefunden.
Keine lokalen Maxima oder Minima
Keine lokalen Maxima oder Minima
Schritt 11