Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Entferne die Klammern.
Schritt 2
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4
Schritt 4.1
Es sei . Ermittle .
Schritt 4.1.1
Differenziere .
Schritt 4.1.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 4.1.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 4.1.2.2
Die Ableitung von nach ist .
Schritt 4.1.2.3
Ersetze alle durch .
Schritt 4.1.3
Differenziere.
Schritt 4.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.3.3
Vereinfache den Ausdruck.
Schritt 4.1.3.3.1
Mutltipliziere mit .
Schritt 4.1.3.3.2
Bringe auf die linke Seite von .
Schritt 4.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 5
Wende die Konstantenregel an.
Schritt 6
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7
Schritt 7.1
Es sei . Ermittle .
Schritt 7.1.1
Differenziere .
Schritt 7.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 7.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 7.1.4
Mutltipliziere mit .
Schritt 7.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 8
Schritt 8.1
Kombiniere und .
Schritt 8.2
Kombiniere und .
Schritt 9
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 10
Schritt 10.1
Kombiniere und .
Schritt 10.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 11
Da die Ableitung von gleich ist, ist das Integral von gleich .
Schritt 12
Schritt 12.1
Vereinfache.
Schritt 12.2
Vereinfache.
Schritt 12.2.1
Mutltipliziere mit .
Schritt 12.2.2
Mutltipliziere mit .
Schritt 12.2.3
Kombiniere und .
Schritt 13
Schritt 13.1
Ersetze alle durch .
Schritt 13.2
Ersetze alle durch .
Schritt 14
Stelle die Terme um.